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Abstract
Some years ago an anomaly was noted in the decay of luminescence in certain
doped alkali halides. The anomaly was eventually explained using a factor 1
billion (109) slowdown in lattice relaxation, a remarkable stretching of time
scales. This slowdown was found to be caused by the creation of a ‘breather’ in
the neighborhood of the dopant. Discrete breathers are nondispersive classical
excitations that are known to be significant in many natural systems. Broad
ranging reviews of mathematical techniques and physical applications have
recently appeared. In the present review we focus on the occurrence of breathers
in doped alkali halides. Several more general properties of breathers have arisen
from this study and these are presented as well. Among them is the study of the
quantum breather, its quantization and stability, a topic less fully explored than
the classical theory because it does not yield easily to numerical simulation.

PACS numbers: 63.20.Ry, 78.55.−m, 31.70.Hq, 63.20.Pw, 03.65.Sq,
31.15.xk, 05.45.−a, 78.55.Fv, 63.20.kp, 71.55.−i

(Some figures in this article are in colour only in the electronic version)

Contents

1. Introduction 2
2. Slow lattice relaxation and discrete breathers 3

2.1. Decay anomaly in alkali halide crystals 3
2.2. From decay anomaly to discrete breathers 9

1751-8113/10/183001+46$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/18/183001
mailto:mihokova@fzu.cz
mailto:schulman@clarkson.edu
http://stacks.iop.org/JPhysA/43/183001


J. Phys. A: Math. Theor. 43 (2010) 183001 Topical Review

3. Properties of discrete breathers in a diatomic lattice. KAM Tori 13
3.1. Robustness with respect to changes in the interatomic potential 14
3.2. Diatomic lattice and cation/anion mass ratio 16
3.3. Stability of classical breathers 18
3.4. Torus doubling resonances 19

4. Semiclassical quantization of discrete breathers 22
4.1. Takatsuka’s frequency method 22
4.2. EBK quantization 23
4.3. KAM tori, the EBK method and stroboscopic reduction 24
4.4. Calculating the action using a stroboscopic 25
4.5. Numerical results 26

5. Stability of quantum breathers 27
5.1. Numerical diagonalization 29
5.2. Path integral approach 31
5.3. Setting up the path integral 31
5.4. Methodology 34
5.5. Localization 37

6. Breathers and noise/temperature 39
6.1. Temperature dependence of the decay anomaly 39
6.2. Models of noise 39
6.3. Non-dissipative incoherent reflection 40

7. Conclusions and remaining issues 42
Acknowledgments 43
Appendix. Simulation parameters and physical constants 43
References 44

1. Introduction

The subject of this review began with the discovery of a significant anomaly in the decay
of luminescence in KBr doped with Pb [1]. The Pb was excited with ultraviolet light, and
was expected to decay from two principal levels. Since one of these levels involved a highly
forbidden transition, the usual pattern would have been rapid (nanosecond) exponential decay
of a portion of the amplitude followed, a ‘long’ time later, by slow (millisecond) decay of
the amplitude from the other level. Instead, there was a tremendous enhancement of the
slow component decay rate during the millisecond or two following the excitation, a period
when nothing of interest should have been occurring. Several straightforward explanations
were considered and ultimately rejected. For example, the possibility that it was all due to
unknown impurities and defects was dealt with by preparing ever more perfect crystals along
with increasing dilution of the color center dopant.

It was then proposed that this millisecond long anomaly might be due to slow relaxation
of the crystal. While this was a severe stretching of the time scales one ordinarily associates
with crystals (nine orders of magnitude!), it did manage to explain the data, at least
phenomenologically [2]. This left open the question of how relaxation could be retarded
to such a degree.

The solution turned out to be the formation of breathers, long-lived excitations of the
underlying crystal lattice that remain localized and are able to confine much of the energy
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released in the KBr after the Pb is excited4. Such excitations exist only by virtue of nonlinearity
in the forces between the ions of the lattice. Coming across breathers for the first time can
be shocking: For the diatomic chain, one has two atoms oscillating vigorously, while an
adjacent atom hardly moves at all. It would seem that elaborate choreography would be
needed to avoid having the surely large forces from the second atom transmitted to the third.
But then you put in a bit of noise and discover that, no, the breather is not destroyed—as your
choreography intuition might have suggested—but is in fact remarkably robust. The key to
understanding their stability is to think in terms of phonons. Because of the nonlinearity, the
breather oscillations have frequencies either above the phonon band(s) or in the gap(s). As a
result, the energy cannot be radiated away. A recent review on the subject of breathers is that
of Flach and Gorbach [3], where many earlier references can be found.

In section 2 we review the experimental background, the phenomenological explanation
and the basic lattice model within which the breather makes its appearance. Following that,
in section 3 we review ways of describing this nonlinear excitation, for example, as a torus in
phase space, essentially a KAM torus. This is also an opportunity to go into a mathematical
digression describing an exotic nonlinear bifurcation that, as far as we know, was first noted
in this context.

In sections 4 and 5 we turn to quantum properties. In the first of these we obtain the
system’s energy levels, calculated at the semiclassical level. The following section addresses
the quantum stability of our breathers: after all, quantum mechanics is well known to allow
classically forbidden transitions, and we demonstrate that decay of the breather, for our
parameter values, is not one of them. Finally, section 6 deals with experimentally observed
temperature-dependent effects and our modeling of them using noise.

2. Slow lattice relaxation and discrete breathers

2.1. Decay anomaly in alkali halide crystals

In [1] anomalous decay in the slow-emission component of isolated impurity centers in alkali
halide crystals has been reported. For as long as several milliseconds one sees enhanced and
non-exponential decay, going over finally to an exponential. This pattern was observed for
Tl+ and Pb2+ centers in various alkali halide hosts, with both fcc [4–6] and bcc [7] structure.
The pressing question became, is this intrinsic or is it a consequence of crystal defects or
other irregularities of the luminescent center environment. Non-intrinsic explanations were
systematically excluded through improved crystal preparation, sample annealing, impurity
dilution and other cautionary measures [2].

The explanation ultimately proposed [2] was that the lattice took a long time—on the
order of ms—to yield to the strain caused by the Jahn–Teller deformation of the emitting
center. The key feature of this slow relaxation is that the unrelaxed crystal imposes forces on
the quasimolecule and sends it from the metastable level to the radiative one where it decays
far more rapidly than if it had remained in the metastable level.

The emitting center is formed by the impurity ion and its nearest neighbors. For specificity,
consider KBr:Pb. For the other materials and impurities the reasoning is similar (when we
wish to emphasize broader applicability we may refer to the lattice as KX or KX:Pb, etc
(X = Cl, Br, I)). The system is excited by a flash of UV light (408 nm). Prior to that flash, the
Pb2+ sits in a symmetrically displaced array of the six nearest neighbor Br anions, displaced
because of the large size of the Pb2+. After the UV flash the (PbBr6)

4− system goes into an

4 Our discussion is in terms of KBr doped with Pb. As will be evident below, this is only one of several substances
in which the anomalous decay occurs.
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Figure 1. Energy level scheme for the relaxed excited states of the PbBr4−
6 molecular complex with

Oh symmetry in its ground state. Splitting of the levels is due to spin–orbit and JT interactions.
The JT axis is parallel to the [0 0 1] direction. The asterisk on 3T∗

1u is to remind the reader that the
level is not pure triplet state, but is the state resulting from the spin–orbit mixing of 3T1u with an
upper lying singlet 1T1u state. For details see [10].

excited state. Because the excited states of this quasimolecule are degenerate, according to
the Jahn–Teller (JT) theorem [8, 9] it is subject to a spontaneous deformation that reduces
its original (ground state) symmetry. The deformation runs along the JT axis and is highest
along this axis with respect to other directions. The final splitting of excited state levels is
thus a result of the spin–orbit (SO) interaction and the JT effect. The lowest excited emitting
states in the potential well consist of the lower level 1, corresponding to the 3A1u state, and
the upper level 2, corresponding to the lower doublet of the split 3T∗

1u state; see figure 1.
(This scheme is generally accepted; see, e.g., [10–12].) In both cases the (PbBr6)

4− system
quickly relaxes to the minimum on the adiabatic potential energy surface (APES) which is a
Jahn–Teller minimum with lowered symmetry relative to the original octahedral symmetry of
the ground state. From this minimum it can decay radiatively (or otherwise). In the sequel,
we confine attention to these two states, level 1, the ‘metastable’ level, with a decay time on
the order of milliseconds and level 2, the ‘radiative’ level, with a decay time on the order of
nanoseconds.

For the lower level the radiative decay is slow, giving the lattice an opportunity to relax,
thereby changing the adiabatic energy levels themselves. We use the moving values of the
adiabatic energy levels in the following way: for any particular lattice configuration there
is some such set of states and levels (as if the lattice were frozen), and we use them as our
basis vectors. The time dependence of the Hamiltonian reflects the changes in energies and
interstate couplings due to changes in the lattice. We also assume that throughout this process
the natural radiative decay rates, including the metastable one, can be taken to be constant (but
there will be modification at higher temperatures; see below).

We concentrate on the lower level, 1, that having the slow decay. As the lattice adjusts to
the distortion of the (PbBr6)

4− complex in its excited state (due to the Jahn–Teller effect) the
entire pattern of adiabatic energy levels shifts. Of course the lower level can decay radiatively
with a lifetime of several ms, as estimated in [1]. The complicating feature though is its ability
to make a transition to the upper level and from there to decay quickly. This transition results
from electron–lattice interactions.

The physically significant assumption is that the lattice relaxation is on the order of ms.
We next show that this assumption can lead to the observed decay curves.

Assume then that a few ns after the flash the upper and lower states have a particular
relative occupation. This may be the result of their being populated via a third state or
having a fast phononic response kick systems from the upper to the lower state. From the
perspective of our explanation of the non-exponential decay, those systems in the upper level
at this point simply decay. Those in the lower level decay more slowly, but not yet with the
asymptotic characteristic lifetime found in [1]. Rather (as we describe quantitatively below)
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they continue to interact strongly with the upper level and amplitude leaks out of the lower
level due to transitions to the upper level. This continues until lattice relaxation weakens the
coupling between the levels. At this point the basic lower-level lifetime can be used to describe
the exponential decay of the system. This description applies to experiments performed at low
(liquid He) temperatures; at much higher temperatures there is also back transfer to the upper
level, induced by phonons.

2.1.1. Zero temperature formalism. Our basis consists of the two electronic levels, which in
the absence of interactions, etc, have energy difference E(R) (R being a collective coordinate
for the configuration of the nuclei of the (PbBr6)

4− complex). Without loss of generality,
we can set the lower energy to zero. We also incorporate within the Hamiltonian the fact of
their (radiative) instability, assigning imaginary parts to the energies. Finally we include an
interaction, ‘α’, between the levels, which can vary with R, based on the assumption that this
coupling of electronic levels is a consequence of their interaction with the neighboring atoms.
The Hamiltonian reflecting these assumptions has the form

H =
(

E(R) − i
2h̄γf α(R)

α(R) − i
2h̄γs

)
. (1)

The quantity γs (‘s’ ∼ ‘slow’) corresponds to the slow decay, so that γf � γs (‘f ’ ∼ ‘fast’).
We will treat the collective coordinate R as quasiclassical, that is, not as a quantum mechanical
degree of freedom, but as a parameter that finds its preferred value quickly as the lattice
adjusts. This adjustment of the lattice is a reaction to the force that the local region (Pb
and its immediate neighbors—the system described by our quantum formalism) exerts on the
lattice. The change in the electronic state of the PbBr4−

6 complex (due the UV illumination
in the experiment) sends it to a new equilibrium intramolecular position due to the electron
redistribution. This results in a distortion of the already stretched lattice (recall that the Pb
is big compared to the K it replaces). So the molecular complex pushes out and the lattice
pushes back. When the system reaches structural equilibrium these forces balance.

The above-mentioned adjustment of the lattice, whose configuration is also treated quasi-
classically, is slow, i.e. it occurs on a ms scale. Thus, while the system is in the metastable
state the lattice adjusts and the value of R is some function of time. We take that function to
be

R(t) = R0 + (R∞ − R0)(1 − e−�t ) (2)

so that R0 is the value of R taken just after the light flash. It is by assuming that 1/� is on the
order of ms that we will produce non-exponential decay on this time scale.

When the system is fully relaxed, the splitting between the levels reaches an asymptotic
value, Ef, but during the initial phases of lattice relaxation the levels should be closer, perhaps
nearly degenerate. We express this change, with R, in the following way: E(R) is assumed
to go from some value E0 at the earliest time, to an asymptotic value Ef. Since R is in turn a
function of t, the form we assume for E is

E = E0 + (Ef − E0)(1 − e−�t ). (3)

As indicated, we further assume that the strength of the coupling α varies. When the
configuration of the neighbors of the Pb2+ ion and of the lattice for the two states are similar,
the coupling of the electronic states is strong. However, as the lattice relaxes the overall states
bear less and less resemblance. Our prescription is then as above

α = α0 + (αf − α0)(1 − e−�t ). (4)
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Figure 2. Decay curve (log10 of radiation intensity) calculated from the model. Dots represent
experimental data for the decay of KBr:Pb2+ at liquid He temperature. The solid line is the
calculated curve. For this calculation only the lower level is initially populated. The parameters (see
the text for their significance) used are α0 = 0.0075, γf = 4 × 104, γs = 1/8, E0 = 3, Ef = 45,
and � = 0.077, where rates are ‘per ms’ and energies are in meV. The dashed curve visible in the
upper left is an exponential fit based on the late-arriving data and is I = 2019×exp(−t/8.06)+61),
where the additive constant represents the background. This curve gives an overall history. The
anomaly is the discrepancy between the dashed curve and the data. It is considerable, although not
prominent in this figure. Later figures (3, 4, 5) focus on this early-time domain.

The evolution of the system is calculated by assuming an initial wave function of the form

ψ(0) =
(

ρ

σ

)
and evaluating the time-ordered product (T )

ψ(t) = T
j=N∏
j=1

exp[−iH(tj )δt/h̄]ψ(0) (5)

with tj = j t/N and δt = t/N . This is done numerically for N sufficiently large that there
is little change in H during the interval δt . From {ψ(tj )} the physically important quantities
can be obtained. For example the radiation rate at time tj is [‖ψ(tj )‖2 − ‖ψ(tj+1)‖2]/δt .
(N.B. This does not distinguish between radiation from the upper or lower level, reflecting
the experimental situation.) The slow relaxation assumption allowed successful fitting of low
temperature KBr:Pb data [2] displayed in figure 2.

The model was extended to the entire collection of Pb and Tl-doped alkali halides at
liquid He temperature [13]; see figures 3 and 4. The dependence of the fitting parameters
on lattice and impurity allows systematic physical interpretation. As one can see from the
experimental data for both Tl+ and Pb2+ centers, the decay curve tends to deviate more from a
single exponential as one progresses through the sequence of crystal lattices KCl→KBr→KI.
The best reflection of this tendency is given by the parameter α which is the coupling between
the energy levels of the excited state induced by the lattice (see equation (1)). In the sequence
KCl→KBr→KI its value increases (with the same trend as the value of the halogen spin–orbit
coupling parameter), indicating that the coupling between the levels becomes stronger. This
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Figure 3. Decay curves calculated from the model. Marks represent experimental data for the
decay of (a) KCl:Pb2+, (b) KBr:Pb2+ and (c) KI:Pb2+ at liquid He temperature. Only the lower
level is initially populated. Dashed lines represent exponential fits to the late-arriving data. In
(a), the fit is I = 4434 × exp(−t/4) + 10; in (b), I = 2019 × exp(−t/8.06) + 61; in (c) I =
209 × exp(−t/9) + 209. The additive constant represents the background. Solid lines represent
the fit to the data from our model. In (a) the parameters are E0 � 10 meV, α0 � 0.001 meV,
� = 0.08 ms−1, in (b) E0 = 3 meV, α0 = 0.0075 meV, � = 0.0077 ms−1, in (c) E0 = 3 meV, α0 =
0.014 meV, � = 0.075 ms−1.
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Figure 4. Decay curves calculated from the model. Marks represent experimental data for the
decay of (a) KCl:Tl+, (b) KBr:Tl+ and (c) KI:Tl+ at liquid He temperature. Only the lower level
is initially populated. Dashed curves represent exponential fits to the late-arriving data: (a) I =
2500 × exp(−t/2.37)+22.5, (b) I = 1250 × exp(−t/2.87)+15, (c) I = 850 × exp(−t/3.3)+51.
The additive constant represents the background. Solid lines represent the fit to the data from our
model. In (a) the parameters are E0 = 4 meV, α0 = 0.005 meV, � = 0.7 ms−1, in (b) E0 =
3.5 meV, α0 = 0.025 meV, � = 0.6 ms−1, in (c) E0 = 5.5 meV, α0 = 0.035 meV, � = 0.2 ms−1.

is consistent with the idea that the larger and more massive lattice anions induce a stronger
coupling.

On the other hand, if one looks at decay curves obtained for different centers embedded
in the lattice, it is evident that the deviation from a single exponential lasts longer for the
(PbX6)

4− center compared to the (TlX6)
5− center (X = Cl, Br, I). This tendency is reflected

in the parameter � (see equation (2)). In our model � is connected with the speed of lattice
relaxation in response to the JT distortion, and it is significantly larger for the (TlX6)

5−

center in all crystal hosts. We suggest that the speed of a lattice response is connected to the
number of lattice ions (surrounding the luminescence center) involved in the overall relaxation
process. In other words, this relaxation rate depends on how far from the luminescence center
the surrounding lattice is still affected by the JT distortion of a center and vice versa. The
results obtained indicate that the lattice response is faster for the (TlX6)

5− center relative to
that of the (PbX6)

4− center. Thus in the case of the (PbX6)
4− center a larger volume of the
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surrounding lattice (more mass) is affected and responds. This idea is supported by two facts.
First, because of the larger ionic radius (1.49 Å for Tl+ and 1.32 Å for Pb2+—see [14]) the
character of the bond between the Tl+ and the lattice anions is shifted toward a covalent type
more than it is for Pb2+. As a result, the response to the JT distortion is constrained to a
much closer lattice environment of the (TlX6)

5− central quasimolecule than it is in the case
of (PbX6)

4−. Second, when Tl+ substitutes for K+ in the lattice, the charge distribution in the
lattice remains unchanged, since they have the same charge. By contrast, Pb2+ substitutes for
the lattice cation with an excess of a positive charge and needs a cation vacancy (v−

c ) nearby to
locally compensate the charge imbalance. Nevertheless, the Pb2+–v−

c pair is an electric dipole
with its own electric field. This field has long range effects and creates charge redistribution
in the lattice. Therefore, it may be expected that any change in the luminescence center itself
(JT distortion after an excitation) affects a much larger region of the lattice than in the Tl case.

2.1.2. Finite temperature formalism. Experimental results in [1] showed that with increasing
temperature the anomalous (nonexponential) part of the slow decay gradually becomes less
evident and vanishes completely around 150 K. In [15] we provide new experimental data
studying the temperature dependence of the slow decay for KBr:Pb2+. Moreover, we extend
the theoretical model to higher temperatures.

It is convenient to rewrite H in terms of the Pauli spin matrices. In this representation

H = H0 − i
h̄

2
g, (6)

with H0 and g real Hermitian matrices

H0 = E

2
σ3 + ασ1 and g = 1

2
(γf + γs)σ0 +

1

2
(γf − γs)σ3. (7)

In H0 the energy has been shifted by E/2 relative to the form in (1), which makes no dynamical
difference, and σ0 ≡ 1 is the 2 × 2 identity matrix.

To deal with the effect of temperature we go to a density matrix formalism. The density
matrix can be written in extended Bloch form [16]

ρ =
3∑

α=0

rασα = r01 + 	r · 	σ , (8)

with 	σ the Pauli spin matrices.
To invert (8) use rα = 1

2 Tr σαρ. Our Hamiltonian, (1) (or (6)), has an anti-Hermitian part,
so that in place of the usual ih̄ρ̇ = [H, ρ], the density matrix equation, at zero temperature,
takes the form

ih̄ρ̇ = Hρ − ρH † = [H0, ρ] − i
h̄

2
{g, ρ}, (9)

with curly brackets indicating the anticommutator.
We next include the effects of thermal phonons at nonzero temperatures. Thermal

coupling can induce non-radiative transitions between the levels. The change in ρ due to
these transitions, when in the presence of n phonons of energy E, contributes the following
term to (9)

ih̄ρ̇phonon = ih̄K

(
nρ22 − (n + 1)ρ11 −D

(
n + 1

2

)
ρ12

−D
(
n + 1

2

)
ρ21 −nρ22 + (n + 1)ρ11

)
. (10)

The quantity K is an asymptotic low temperature transition rate, since at sufficiently low
temperature ‘n’ is effectively zero. It will be phenomenologically determined for our data fits.

8
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The number D governs the decoherence. For phonon-state coupling of the spin–boson form,
D = 1, and we adopt this value in our numerical work.

For the phonon number, n, we take the expected number of phonons of energy E to be
found at temperature T. This is given by the Boltzmann factor

n = 1

exp(E/kT ) − 1
. (11)

The full equation for ρ is

ih̄ρ̇ = [H0, ρ] − i
h̄

2
{g, ρ} + ih̄ρ̇phonon. (12)

This is a linear equation for the four components of ρ. It is convenient to express equation (12)
in terms of the components of the extended Bloch form, equation (8), by defining a column
vector r with components r0, r1, r2, r3. This vector satisfies

ṙ = Wr, (13)

with

0 1 2 3

W =

⎛⎜⎜⎝
−γ0 0 0 −γ3

0 −γ0 − Kn′D −2w 0
0 2w −γ0 − Kn′D −2a

−γ3 − K 0 2a −γ0 − 2Kn′

⎞⎟⎟⎠ .
(14)

In equation (14) we use the notation a ≡ α/h̄, w ≡ E/2h̄, γ0 ≡ 1
2 (γf + γs), γ3 ≡ 1

2 (γf − γs),
and n′ = n + 1

2 . Our results are based on numerical integration of (13). In [15] we show the
calculated fits to the experimental data in a wide temperature range, 6–110 K, and discuss the
temperature dependence of the parameters of our model. Some of the data fits are shown in
figure 5. The temperature dependence of the model parameters E0, α0 and � is displayed in
figure 6.

To summarize, the model of slow lattice relaxation provided satisfactory fits to
experimental data of various alkali halides both at zero as well as finite temperatures, allowing
a unified description of the entire range of phenomena. Other explanations have also been
offered5, and they may apply in particular cases, but not for the full range of observed
phenomena.

2.2. From decay anomaly to discrete breathers

Having related the decay anomaly to slow lattice relaxation, the next issue was the origin of
the slowdown. By modeling the dynamics of the lattice it was found that energy could in fact
be localized in the neighborhood of the excitation [17]. This turned out to be an experimental
realization of a discrete breather. Here is the scenario. Following the UV pulse, and faster
than any scale considered here, the electronic wave function, ψ , distorts. Due to the JT effect
the quasimolecule is pushed hard along one axis and shrunk along the others. This creates the
breather.

5 Since the publication of [2], Ranfagni et al [73] have proposed an alternative explanation of the anomaly based
on tunneling between emission bands. For Tl this effect may contribute, but for Pb (as the impurity), for which the
anomaly is especially strong, no second emission band has been observed.
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the experimental data. The dashed curve represents an exponential fit to the late-arriving data. The
axes correspond to the temperature 20 K (80 K). For better display the data for other temperatures
are shifted. The respective temperatures, time shifts and log-intensity shifts are given by (30 K,
0.5, 0.4), (40 K, 1, 1), (90 K, 0.5, 0.4), (100 K, 1, 0.7) and (110 K, 1.5, 1.4).

(a) (b) (c)

Figure 6. Temperature dependence of the parameters �, E0, α0. Solid circles represent the data
obtained for the exponential lattice relaxation, while hollow squares correspond to a power law
relaxation scheme (details of the latter can be found in [15]).

2.2.1. Lattice models. In the model, one focusses on a ray of atoms along the expansion
axis. The first atom is subjected to a large force which it transmits to the others. Nonlinearity
enters because of the large displacements. To account for the three-dimensional environment
we add a potential (simulating off-chain neighbors) that tends to return each ion to its normal
lattice position. We also assume that the ray of atoms opposite to those we consider is
doing essentially the same thing as those we consider. As a result, the Pb atom does not
have significant motion. Note that the asymmetric stresses imply lesser deformation for off-
axis atoms. The interatomic potential, as a function of the displacement u is taken to be
V (u) = Mω2

0(u
2 + λu4)/2. The Hamiltonian is

H =
N∑

n=1

{
P 2

n

2M
+

rp2
n

2M
+ V (qn − Qn) + V (Qn − qn−1) + ν [V (Qn) + V (qn)]

}
. (15)
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Figure 7. Position versus time. The history of confined oscillations. The lowest curve is Q1(t);
above it is q1(t), etc. The parameters are λ = 1, q0 = 1, ν = 4, N = 15 (30 atoms), r = 2.

The notation and parameters are as follows: λ is the nonlinearity and ω0 is a coupling whose
strength will be taken from experimental data (see the appendix). ν is an effective number of
neighbors and its strength determines the substrate force. Q1 is the first atom to the right of
the Pb, followed by q1, Q2, etc. The Q-particles have mass M, the qs, M/r . For KBr, r ≈ 2.
The impact of ψ (the distorted quasimolecule centered on the Pb) is expressed by setting (the
non-dynamical) q0 �= 0. In our computations we take units such that M and ω0 are unity.

The system was solved by numerical integration. The result was, to us, a complete surprise.
Instead of the large force of the Pb causing a wave that propagated away, the energy inherent in
that force remained localized in the immediate neighborhood of the Pb. The ‘surprise’ turned
out to be a learning experience rather than a discovery, as nonlinearity-induced localization was
already known under various names6. However, finding this phenomenon in the well-trodden
field of luminescence and the Jahn–Teller effect may merit the more generous description.

Thus, under classical dynamics the energy of the extended quasi-molecule is confined
to a small neighborhood of the Pb-excitation-induced-perturbation, a perturbation significant
enough to make nonlinear effects important. As is evident from figure 7, the oscillation
energy is substantially confined to the first two lattice ions (‘Q1’ and ‘q1’). This remarkable
phenomenon is insensitive to the exact parameters, including run time and number of atomic
pairs N. Another illustration of confinement is the picture of the kinetic energy as a function
of time and atomic number, figure 8. This too shows that the energy is substantially confined
within the first two atoms of the chain. The energy deposited in the chain by the JT deformation
does not propagate but becomes bound in vibrations of the first atoms of the chain, i.e. the
breather. It is this lack of energy propagation that lies behind the significant slowdown in
crystal relaxation and it is the origin of the decay anomaly discussed above.

We next study the frequencies of the confined vibrations. To connect to breathers
this will be related to lattice phonon properties. The frequency spectrum of the first four
atoms, obtained by Fast Fourier Transform (FFT) of Q1(t), q1(t),Q2(t) q2(t), is displayed in

6 A localized excitation due to nonlinearity is sometimes known as a ‘discrete breather’ (DB), sometimes as an
‘intrinsic localized mode’ (ILM), and sometimes other names are used as well. For our application we prefer the first
term, since it does not suggest translational invariance.
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Figure 8. Kinetic energy (vertical axis) of the system as a function of time and atom number. The
parameters used in the simulation are N = 20, q0 = 1, r = 2, ν = 4 and λ = 1.
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Figure 9. Fourier transforms (intensity) of the functions (Q1(t), q1(t), Q2(t), q2(t)) in curves 1
through 4. The curves corresponding to successive atoms are vertically shifted (downward by 4)
for better display. The superimposed horizontal lines indicate where the phonon frequency bands
are. Arrows point to the principal frequencies of the spectrum outside the phonon bands. All other
intense frequencies are resonances or beat frequencies of these two. The parameters used in the
simulation are N = 20, q0 = 1, r = 2, ν = 4, and λ = 1.

figure 9. Because we use finite-interval FFT, a sharp line in the true spectrum is spread, and
finding maxima in the FFT spectrum is not sufficient to extract true single frequencies. In
section 4.1 we show how this problem is overcome, using a method of Takatsuka [18]. The
spectrum shows two dominant frequencies falling above and below the optical phonon band.
These frequencies characterize the oscillations of the breather. The position of the phonon
bands relative to the rest of the spectrum is marked by a sequence of horizontal lines. It is
important, with respect to the localization of the excitation, that the breather frequencies do
indeed fall outside the phonon bands. Note too that because our model imposes a holding
(or substrate) force to simulate atoms not included in the model, important phonon modes are
missing. In particular, low frequency modes, allowed in a true crystal, do not occur in the
model. As a consequence, the acoustic phonon band does not start from zero frequency.

Besides the extreme spatial localization, another property of our confinement curves—
perhaps the characteristic soliton feature in the Fermi–Pasta–Ulam (FPU) study—is the failure
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Figure 10. Energy per normal mode at various times. Parameters are λ = 1, q0 = 1, ν = 4, N =
15, r = 2.

of energy to disperse among the normal modes. Figure 10 shows energy dispersal for various
times. Unlike FPU, our initial conditions preclude concentration in one mode. Nevertheless,
it is clear that while energy can shift from mode to mode (cf time-25 in the figure), it tends
to return repeatedly. Note that because of nonlinearity the energy in each mode need not be
conserved.

3. Properties of discrete breathers in a diatomic lattice. KAM Tori

Our focus will be on the existence of a second breather frequency (in contrast to the monatomic
lattice), since there is already an extensive literature on the monatomic classical case. An
important tool for visualization in this context is the KAM torus. This is a structure in
phase space, and is named for the mathematicians (Kolmogorov, Arnold, Moser) who showed
its presence for small nonlinearity [19, 20]. Although the Jahn–Teller-induced dynamics is
strongly nonlinear, the toroidal phase space structure does appear and we refer to it as a
KAM torus. For our systems, the torus is two-dimensional even when substantially more
than the first two atoms on the chain are oscillating. Thus the dimensionality is not related
to the number of significantly participating atoms and is a reflection of the diatomic nature of
the solid. A stroboscopic analysis reveals loop subsets of the torus (easily understandable in
an action-angle context). These loops play a vital role in the quantization of breathers, as
described in section 4, and the two-dimensionality makes possible the calculation of quantum
levels in these systems.

In figure 11 we show a projection of the KAM torus which is the classical phase space
orbit of the breather. Superimposed is a pair of loops, which result from a stroboscopic
image of the torus. As will be developed in section 4, the ability to produce such a figure
takes advantage of the existence of a transformation (à la KAM), albeit an unknown one, to
action-angle variables such that the Hamiltonian is a function of the action variables only.
With {J1, θ1, . . .} the variables, the torus is given by the equations θk = ωkt + θk0 (with
ωk = ∂H/∂Jk), k = 1, . . . , N and N the number of coordinate degrees of freedom of the
system. If one knows one of the ωk’s, then by viewing the full orbit only at multiples of 2π/ωk
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Figure 11. The KAM torus, projected on a plane within the four-dimensional space
{Q1, P1, q1, p1}. The figure contains 100 000 points, with 100 points taken per system time unit.
The abscissa is position and the ordinate momentum in the units described in the appendix. Loops
in the torus represent projections on the Q1–P1 and q1–p1 planes of the stroboscopically viewed
KAM torus, substantiating the assertion that the torus is two-dimensional (only has two significant
nonzero radii). The parameters used in the simulation are N = 20, q0 = 1, r = 2, ν = 4, and
λ = 1.

a torus of one lower dimension is generated. These are the loops of figure 11, one for each of
the dominant frequencies. The fact that these are clean, one-dimensional loops implies that
the KAM torus for our simulations is only a two-dimensional structure7. This is of course
consistent with the presence of only two dominant frequencies outside the phonon bands in
the frequency spectrum although there is no requirement that only two frequencies appear.
The original momenta and positions are nonlinear functions of the action-angle variables, so
that in analyzing Q1 and other functions, one can certainly obtain beats and multiples of the
‘true’ ω’s.

3.1. Robustness with respect to changes in the interatomic potential

The appearance of breathers in the dynamics of the Hamiltonian (15) is not restricted to the
potential V (u) = Mω2

0(u
2 + λu4)/2, and is far more general. This is shown in [21] for a

variety of interatomic potentials and is especially evident using KAM tori. The degree of
localization varies with the potential, but for strong enough nonlinearity it is always present.

There are a number of potentials that are popularly used for the description of interatomic
forces. We mostly use the notation of [22], an article that also addresses nonlinearity-induced
localization8.

Polynomial interatomic potential

VP (x) = Mω2
0

[
1

2
x2 +

κ

3
x3 +

λ

2
x4

]
(16)

where M and ω0 are taken to be 1 in our work.

7 In principle, the loop we see could be the projection from a higher dimensional structure. This would be a (non-
generic) coincidence, but coincidences do happen. Nevertheless, that is not occurring here. In our investigations we
simultaneously viewed more than one projection of the torus, and when there was a one-dimensional loop in one
plane, there was a one-dimensional loop in the others. This can be seen in figure 12(d), where we do show more than
one plane.
8 Kiselev et al [22] discusses ‘intrinsic’ localized modes, working in a translationally invariant context, which is not
the case in our situation.
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Morse interatomic potential

VM(x) = P(e−ax − 1)2. (17)

Born–Mayer–Coulomb interatomic potential

VBMC(x) = αMq2

d2

[
− d2

x + d
+ ρ e−x/ρ + d − ρ

]
(18)

where αM is the Madelung constant, q is the effective charge, d is the distance between adjacent
particles and ρ describes the repulsion between atoms.

Others: The Toda potential (V (x) = (a/b) e−bx + ax − a/b) and Lennard–Jones potential
(V (x) = ε{[d/(x + d)]12 − 2[d/(x + d)]6 + 1}) are also often used, but we did not examine
their breather-formation properties.

We performed lattice dynamics simulations using the potentials of equations (16)–(18).
For simulations of chain dynamics with Morse and Born–Mayer–Coulomb (BMC) interatomic
potentials, equations (17) and (18), the parameters entering potentials were chosen in such a
way that the potentials are somewhat ‘softer’ than the polynomial potential. Nevertheless, the
results in all cases provide substantial kinetic energy confinement extended to the region of the
first five to six atoms of the chain. Frequency spectra as in figure 12(b) appear to have several
dominant frequencies, but there still turn out to be only two truly independent frequencies,
corresponding to two degrees of freedom of the system represented by two-dimensional KAM
tori in multidimensional phase space (figures 12(c) and (d)).

The two-dimensional Morse and BMC tori eliminate one argument that might have
seemed reasonable to justify the low KAM torus dimension in the other cases. For the quartic
polynomial potential, for most of the parameter values we analyzed in detail, hardly more than
two atoms were substantially involved. Atoms number 3 and 4 do have a small percentage
of the energy, but you might have argued that with most of the energy localized on only two
coordinates the KAM torus would be similarly confined in phase space. But for BMC and
Morse, four or five atoms move appreciably.

Determination of the dominant frequencies of the breather with high accuracy (5 digits)
is the most important issue for establishing the number of degrees of freedom of the breather,
or the dimension of the KAM torus. For the BMC potential we needed to apply a special
‘cleaning mechanism’ to the frequency spectrum. Two problems were at work. First there is
a finite size effect: although most energy (due to nonzero q0) remains in the breather, a small
amount is typically radiated away. When this bounces off the far boundary (usually at the 40th
atom in our simulations) it will return to disturb the breather. Second, and more fundamental,
is that quite a few additional frequencies show up in the BMC spectrum. As it later turned
out this was not because the dimension of the torus was greater than 2, but (we believe) is
the result of the transformation from action-angle variables being more nonlinear than for the
other cases. The first problem was dealt with by putting a damping force on the last atoms of
the chain so that the energy that reached the boundary was dissipated and did not reflect. This
does clean up the spectrum a bit. As indicated, our determination of frequency used a method
of Takatsuka [18], see also section 4.1 (as implemented in [23]). The BMC spectrum was more
complicated yet, with a background of what appear to be many frequencies. We dealt with this
by using the single frequency method of [18] and then using properties of classical mechanics
to improve upon it. A stroboscopic view with the raw initially derived frequency gives a rather
fragmented image, but by searching nearby frequency values lovely loops emerged, and in
fact only two of them (for the two principal raw frequencies), cf figures 12(c) and (d). In [23]
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Figure 12. Born–Mayer–Coulomb potential. (a), (b) and (c) as in figure 1. (d) The KAM torus
projected on a different plane. Parameters used in the simulation: N = 20, q0 = 1, r = 2, ν =
4, αMq2/d = 10, ρ = 0.3 and d = 3.3.

the sharpness of the strobed loops originally served as a check on frequency; in the present
context it becomes a yet finer tool for ascertaining the true underlying classical values.

A study of the chain dynamics with the foregoing collection of interatomic potentials
confirms that the confinement phenomenon, which in our situation means breather formation,
is not a property of a specific choice of interatomic potential. Rather it is a robust feature of
the dynamics.

3.2. Diatomic lattice and cation/anion mass ratio

Other physically significant aspects of the breather were checked. Physical observations
showed systematic behavior of the anomaly when the host lattice is changed. Namely for
potassium halides doped either with Tl+ or Pb2+ the anomaly grows (the nonexponential part
of the decay is steeper and/or survives to longer times) with increasing size and mass of
the lattice anion. This occurs in the sequence of lattices KCl→KBr→KI (cf figures 3 and
4). Experimental results with Pb2+-doped NaBr and RbBr crystals [24] show that similar
behavior is observed in the sequence of lattices RbBr→KBr→NaBr where the lattice cation is
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Figure 13. Kinetic energy-weighted position (in atomic spacing units) as a function of the
anion-cation mass ratio. For details see the text. The parameters used in the simulation are
N = 20, q0 = 0.5, ν = 4, and λ = 0.25.

successively made smaller and lighter. Therefore, a quantity that certainly affects the character
of the decay anomaly is r, the ratio of the mass of the lattice anion to that of the lattice cation.
Experimental results suggest that alkali halides for which the anion-cation mass ratio is close
to one have little or no anomaly in their luminescence decay; as the ratio grows the anomaly
increases. Breather formation exhibits a similar effect: for moderate nonlinearity, as this ratio
approaches unity the breather gets more and more delocalized, and for appropriate parameters
disappears completely. (Of course for sufficiently large nonlinearity there will be a breather:
this is just the monatomic case.) To study the breather as a function of the anion-cation mass
ratio we used our standard polynomial potential. We performed lattice-dynamics simulations
changing the atomic mass ratio entering the chain model. It turns that different mass ratios
can be more or less favorable for forming the breather. The simulations were made for a chain
of 40 atoms. As a measure of the degree of confinement of the energy to the region of the
impurity, we calculated a kinetic energy-weighted position. That is, let k be the atom number,
k = 1 for the immediate neighbor of the impurity, and counting outward. Let wKE(k) be the
average kinetic energy of the kth atom. Then

kKE ≡ 〈k〉 =
∑

k kwKE∑
k wKE

. (19)

The smaller this quantity, the more the energy concentrated in the breather, and therefore
the bigger the expected decay anomaly. We chose this measure of confinement because
of the usefulness of the kinetic energy plot (see figure 8) for immediate recognition of the
confinement phenomenon. The result of a systematic study of kKE as a function of r is shown
in figure 13. Note that for the parameters used, as r → 1, there is a kind of phase transition,
namely kKE → ∞, where ‘∞’ for this finite lattice means halfway to the boundary, i.e. a
delocalized excitation.

Additional support for the breather mechanism comes from studies of the same substance,
undergoing JT deformation along different axes. When the JT axis does not provide a chain
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of nearest neighbors, there is essentially no anomaly. It is known that the quasimolecule
associated with an isolated impurity and its nearest neighbors in alkali halide crystals under
excitation undergoes JT distortion either along tetragonal or trigonal axes. Some substances
show two emission bands: one is called the AT emission and is related to a tetragonal distortion,
the other, AX emission, is related to a trigonal distortion. With respect to potential breather
formation these distortions are quite different. In one case (AT, tetragonal) there is a line of
nearest-neighbor atoms, allowing the physical picture described in our model. In the other
(AX, trigonal) direction there is no chain of nearest neighbor atoms. Experimentally we have
observed both emissions for KBr:Tl and NaBr:Pb crystals. In both crystals the anomaly was
observed only for the slow component of the AT emission, while AX emission decay showed
no anomaly. Decay anomalies either reported above or cited have always been associated with
the AT band.

3.3. Stability of classical breathers

Discrete breathers in one-dimensional monatomic lattices are known to exist [25, 26].
However, one expects that in a diatomic lattice the presence of two frequencies at which
significant oscillation takes place could cause resonances and destroy the breather. (One
breather frequency is above the optical phonon spectrum of the lattice, while the other is in
the gap between the acoustical and optical phonon bands.) In [27] we provided evidence for
the survival of breathers on the scale necessary for the explanation of the experimental data,
namely 109 natural lattice time units, more than 108 breather oscillations.

Finding a good measure of breather stability is not straightforward. For example, the
total energy in any finite subset of atoms will vary. Amplitudes are similarly difficult to get
information from (cf section 4.1). Radiated energy (if there is any) is difficult to distinguish
from either the exponential dropoff (with distance) in breather excitation or from residual
excitation present even after we have done our best to create a pure breather. The ideal
quantity would be the action, the variable ‘J’ that is constant in the (unknown) action-angle
variables that solve the problem. This is not an easily computable quantity, and we have
instead taken a closely related quantity, the frequency, ω = ∂H/∂J , as a surrogate for J. As
we now show, these frequencies, associated with the breather, are extremely stable.

The system is begun at rest (all q’s, q̇’s, Q’s and Q̇’s zero) with the non-zero value of q0

(the ‘push’ from the Jahn–Teller distortion) forcing the system into motion. For a preparatory
period, typically 1000 or 1500 time units, the far end of the chain is dissipative. Thus, a
breather is formed with any non-breather excitation radiated away and absorbed. After this,
the profile, energy as a function of atom number, declines approximately exponentially. In
addition, there are certain computational tricks, described in section 6.3, to avoid coherent
reflections off the far end of the chain. The amount of energy remaining after the radiation is a
function of the parameters. For fixed ν and λ, as q0 increases, this energy increases, although
there was no evidence of sudden changes.

Once the dissipation is turned off the system evolves under pure Hamiltonian dynamics
for (typically) 5000 time units. This interval is broken into smaller times, from 200 to 1000
time units, and the dominant frequencies measured in a moving window with this width.
Evaluation of the frequency uses the method described in section 4.1. Further details on the
application of this method to our system can be found in [23].

As is evident from figure 14 and its caption, the frequencies hardly change at all. A linear
fit gave slopes consistent with zero. We mention that in cases where the breather is decaying
for one reason or another (e.g. when there is noise present, as in our finite-temperature studies,
section 6), there is a clear response in the frequency dependence.
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(a) (b)

(c) (d)

Figure 14. Breather frequencies for the first two atoms in a moving window of width
900 time units, for a run of 5000 time units. In each case a fixed frequency (given below),
f, is subtracted from the values in the graph. Note that the frequencies cluster in an extremely
narrow range. We estimated their change in time with a linear fit, which gave us rates of change
that were consistent with zero. Specifically we found that (slope, standard deviation) for the 4
cases graphed is (a) (4.5657 × 10−11, 8.4086 × 10−11), (b) (−4.8344 × 10−9, 6.0324 × 10−9),
(c) (5.3209 × 10−11, 9.8383 × 10−11), (d) (−3.97 × 10−9, 3.9778 × 10−9). (For graph (a), the
frequency displacement is fa = 1.927 53; similarly, fb = 2.8129, fc = 1.799 14, fd = 2.8129.)

In an effort to understand the extreme stability against radiation, we checked whether
combinations (sums of multiples with both positive and negative integer coefficients) of
breather frequencies landed in the phonon bands. It is such combinations that would appear
in nonlinear terms acting on the phonon modes, hence inducing radiation and decay of the
breather. It turned out that combinations of the smallest higher harmonics that land in the
optical band have intensities down by about 7 powers of 10. It is thus completely reasonable
that their effect is suppressed at the level that we found.

Returning to the physical demands of our model, we conclude from these data that the
frequency is unchanging on a time scale of 10−9 units. This implies that the mechanism
responsible for the anomaly in luminescence decay is not affected by the in-principle problem
associated with multiple frequencies in the diatomic lattice. Moreover, we feel that it is
remarkable that conclusions can be drawn on system behavior that deal with times that are
five or more orders of magnitude longer than the actual computer runs.

3.4. Torus doubling resonances

Of further interest with respect to the general understanding of nonlinear phenomena is the
behavior of the system in the neighborhood of a resonance. One might have thought this to
be particularly dangerous to the survival of the breather, but what actually occurs is a kind of
bifurcation, which, as far as we know, has not previously been observed. Below the resonance
(in the control parameter q0), the system lives on a torus in phase space. As the critical region
is approached there is a period doubling, just as for an ordinary orbit, but with the entire torus
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Figure 15. Phase space structures for q0 = 0.4, 0.498 25 and 0.59.

doubled. Once the resonance has passed (as a function of q0), the system goes back to the
usual torus. Now one could certainly see a torus bifurcation if a system with a loop-orbit
bifurcation had attached to it a non-interacting or perhaps weakly interacting oscillator. But
in this case both dimensions of the torus are inextricably intertwined and one could not reduce
the torus to a loop while maintaining the bifurcation.

Phase space structures for nonlinear systems are famously complex [28], with the concepts
of bifurcation and period doubling playing an important role. As we now show, both of these
occur in our system, but because of the dimension of the structure we cannot use the most
direct kind of Poincaré section to illustrate the phenomena. On the other hand, the dimension
is not so high that our bifurcation should be rare.

We will refer to the phenomenon as torus doubling, since the phase space structure consists
of a torus that passes through itself, at least when thought of as a subset of 3-space. We have
established, however, that on a full loop of the doubled-torus, orientation is preserved.

For the present discussion, the parameters of the Hamiltonian (15), are fixed. (We take
λ = 1 and ν = 1, while M and ω0 are 1 by virtue of the units.) As indicated, the control
parameter is q0, the force on the first atom due to the Jahn–Teller effect.

To give an overview, in figure 15 we show phase space structures for various values
of q0. What is illustrated is the points (Q1(t), Q̇1(t), q1(t)) ⊂ R

3 for t = n�t, n =
1, 2, . . . , N,N = T/�t with T ∼ 5000 and �t usually taken to be 0.1. For small q0

one gets a thin torus, while for large q0 one also gets a torus, but with both radii large. In the
intermediate region, near q0 = 0.5, there is a period doubling, with the center of the torus
forming a curve approximately twice the length of the unsplit loop.

A detailed investigation reveals the following.

• The dominant frequency for q0 � 0.47 is the breather frequency in the gap between the
acoustic and optical phonons denoted ω� (for ‘low’). The other breather frequency, that
above the optical band, ωh (‘high’), has smaller, but nonzero amplitude (cf figure 16).

• In the neighborhood (with respect to q0) of the torus doubling, the ratio of ωh to ω� is close
to 3-to-2. This implies that the half-frequency, which is associated with period doubling,
is increasingly excited by nonlinear terms in the equation of motion. As a resonance,
this is the lowest possible order (1–1), with ωh − ω� ∼ ωpd , where ωpd = ω�/2 is the
period-doubling frequency (cf figure 16).

• Fourier transforms of the positions of the first four atoms confirm the excitation of the
period doubling frequency; interestingly, there is greater amplitude for the half-frequency
(ω�/2) in the second atom than in the first (cf figure 16).
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Figure 16. Frequency spectra of the first 4 atoms for q0 = 0.4, 0.498 25 and 0.59 ((a), (b), and
(c), respectively). (Atom 2’s spectrum is displaced by 4 units below that of atom 1, etc.) The
horizontal green bands traversing the figures vertically represent the phonon bands (acoustic and
optical).
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Figure 17. Strobing at the period doubled frequency (ω�/2). The images (a), (b) are for the
dynamical simulation, with runs of 3000 and 5000 time units, respectively. Points are labeled
according to whether they enter on odd or even numbered strobe images (one set consists of
(darker) blue circles, the other in (lighter) green x’s (c)). For the shorter interval the torus has not
filled out and the two portions have not quite met. For 5000 time units the torus has nearly filled
out completely and it is clear that there are two separate portions. The image c is what one gets
for the Lissajous figure, a combination of sines and cosines with frequencies 1.01 and 1.5, close to
the 3–2 ratio.

• The double loop is not knotted.

• Close to exact matching of the frequency ratio, one requires very long computer runs to see
the torus fill out. For shorter times one gets a closed ribbon-like structure. By checking
the orientation of lines on cross sections of the ribbon, we found that the orientation does
not change, i.e. it is a cylinder and not a Möbius strip.

• For longer runs, the portion of the loop formed in the second half of the doubled period
nearly overlaps with the first. By averaging over successive cross sections however one
can see that this averaged quantity behaves like the doubled orbit in lower dimensional
period doubling orbits (e.g. for the Duffing equation, [29], figures 11–7, or the Rössler
equation, [30], figure 3).

• It is important to distinguish the doubled torus from a 3–2 ratio Lissajous figure. With a
ratio close to (but not exactly) 3–2 and for runs of finite length, such a figure can indeed
resemble figure 15(b). Nevertheless a sharp distinction can be drawn by stroboscopic
cross sections with varied time intervals (see figure 17).

21



J. Phys. A: Math. Theor. 43 (2010) 183001 Topical Review

• The same phenomenon occurs for ν = 0.75 for q0 near 0.59, indicating that torus doubling
is generic.

• As remarked above, the period doubling of our torus is not simply the doubling of a
one-dimensional orbit, fattened by an extra oscillator. By adjusting additional control
parameters one can indeed suppress one or the other breather frequency9. However, the
essence of this bifurcation is a 3–2 resonance involving both these modes, depending
thereby on the nonlinear coupling. Hence, the phenomenon studied here intrinsically
depends on the full torus structure.

4. Semiclassical quantization of discrete breathers

To complete a physical theory of breathers one must quantize this excitation. The computation
of breather energy levels was accomplished in [23] and is described in the present section.
The quantum decay theory is treated in section 5.

Although for physically relevant breathers there are only two degrees of freedom to
quantize, they are embedded in far more: the breathers are collective nonlinear modes. While
the involvement of distant atoms is small it must be taken into account, despite the small
oscillation amplitudes. Fortunately, the experimental regime is one in which semiclassical
methods should be effective. Since the motion is regular, EBK quantization (Einstein–
Brillouin–Keller) [31–33] can be applied. Approaches related to EBK have been used in a
variety of applications [34–43]. The key to our implementation of EBK quantization is a
stroboscopic view of the KAM torus. If desired, the method provides wave functions. We also
present a derivation of EBK that allows a generalization of the form contemplated in [44, 45].

4.1. Takatsuka’s frequency method

In [18], Takatsuka describes a method for obtaining precise frequency information from a
time series, based on the FFT. This method gives remarkable precision, well beyond a naive
uncertainty principle estimate. What allows this improvement is the assumption that there is
a single dominant frequency. We mention a second frequency determination method, due to
Laskar [46], a version of which was used in an attempt to determine amplitudes.

Assume that the underlying signal has the form

φ(t) = A eiωt . (20)

The data consist of φ evaluated at N points, t = j�t, j = 1, . . . , N and �t = T/N , with T
the total time interval. Using the Fourier transform conventions of MATLABTM yields

X(k) =
N∑

j=1

φ(j�t) e− 2π i
N

(j−1)(k−1)

=
N∑

j=1

A exp

(
ij

[
ω�t − 2π

N
(k − 1)

]
+

2π i

N
(k − 1)

)
. (21)

Introduce the notation

r ≡ exp

[
i

(
ω�t − 2π

N
(k − 1)

)]
, z ≡ e

2π i
N

(k−1)r(1 − eiωT ) = eiω�t (1 − eiωT ). (22)

9 This was carried out in [23], where the action was systematically calculated as a function of displacement of both
first and second atoms.
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Note that z does not depend on k. Then

X(k)

A
=

⎛⎝ N∑
j=1

rj

⎞⎠ exp

(
2π i

N
(k − 1)

)
= z

1

1 − r
. (23)

Let k0 be such that k0 − 1 < N
2π

ω�t � k0, and examine the ratio

Rk ≡ X(k + 1)

X(k)
= 1 − rk

1 − rk+1
= 1 − exp

(
iω�t − 2π i

N
(k − 1)

)
1 − exp

(
iω�t − 2π i

N
k
) . (24)

Define x, 0 � x < 1, through the equation ω�t = 2π
N

(k0 − x). For small � ≡ k − k0, since
2π/N is small,

Rk ≈ ω�t − 2π
N

(k − 1)

ω�t − 2π
N

k
= � + x − 1

� + x
. (25)

What makes Takatsuka’s method work is the fact that this quantity is positive except for � = 0,
allowing an easy numerical search for k0. We thus identify k0 by the condition Rk < 0. For
this value

Rk0 = x − 1

x
⇒ x = 1

1 − Rk0

. (26)

This gives the estimate for ω,

ω = 2π

N

1

�t
(k0 − x) = 2π

T

(
k0 − 1

1 − Rk0

)
. (27)

For the pure signal φ(t) one can obtain the magnitude of the amplitude A as well. By
straightforward steps one obtains

|A| = (2π/N |z|)|Xk0+1||Xk0 |/|Xk0 − Xk0+1|. (28)

In practice, it turns out that even if one does not have a purely monochromatic signal, the
frequency estimate remains excellent. However, the amplitude estimate is less robust and our
results do not depend on it. The frequency estimate, equation (27), though has been found
accurate far beyond O(1/N), as we have checked numerically by feeding in pure and mixed
artificial signals. An analog of the Laskar method [46] was used for amplitudes, and was
slightly more reliable than equation (28), but we have not used amplitude estimates for any of
our conclusions.

The frequency estimates of Takatsuka [18] are essential for the stroboscopic method that
we use for evaluating the classical action.

4.2. EBK quantization

EBK quantization is a multidimensional form of Bohr–Sommerfeld quantization and dates to
Einstein’s prescient 1917 article [31]. Brillouin [32] and Keller [33] brought the method to its
present form (the latter introducing phases often attributed to Maslov, and which may predate
Keller as well). In this article we give a different derivation, following [23]. It is shown there
that the imprecision due to operator-ordering ambiguities can lead to O(h̄2) changes in the
quantized energy values—but not more than that.

The system we quantize is not chaotic, so there exist classical action-angle variables
(J1, θ1, . . . , JN , θN), with H = H(J1, . . . , JN), reached by canonical transformation from
the original p s and qs. This mapping is not known explicitly, but it gives the {J, θ} as
functions of the original variables. Thus, quantizing in (J, θ) will give a spectrum within
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h̄2 of the true spectrum. Quantization is accomplished by requiring [J�, θ�′ ] = −ih̄δ��′ , from
which follows J� = (h̄/i)∂/∂θ�. Eigenfunctions are therefore of the form exp(ik�θ�). There
arises the problem of boundary conditions. From general principles, an advance of 2π can
only change the wave function by a phase factor, exp(i2πμ), for real μ. Therefore, for each
degree of freedom,

ψ(θ� + 2π) = exp(i2πμ�)ψ(θ�) ⇒ k� = n� + μ� ⇒ j�n = h̄(n� + μ�) (n� = integer).

(29)

In equation (29) individual μ� can independently be taken in [0, 1). Interestingly, Keller [33]
uses single valuedness of the wave function (i.e. μ = 0). For angle variables that assumption
would lose the phase factors central to Keller’s work. The difference is in the topology of the
coordinate space: Keller’s are simply connected, while {θ} ∈ [0, 2π ], with identification of
endpoints, is not.

For canonical variables such that H = H(J1, . . . , JN), the associated quantum operators
commute. Using the quantized values of the J’s and boldface for N-tuples, equation (29), gives
the energy spectrum

En = H(h̄(n + μ)), n� integers, 0 � μ� < 1. (30)

Nonzero μ is common: for the harmonic oscillator, H = ω0J and μ = 1/2. The source of
μ �= 0, which is to say, of non-single-valued ψ(θ), is the transformation from the original
wave function (say) �(q) to the theta-valued wave function, ψ(θ).

The usual WKB fixes μ at 1/2. From [33] one expects situations with μ = 1/4.
Nevertheless, as suggested by the path integral, there are other possibilities. When the
underlying space is itself multiply connected the ordinary (not action-angle) wave function
need not be single valued. Examples are the Aharonov–Bohm effect, Bloch functions in
a periodic solid and SO(3) spin models [44, 45, 47]. In those cases a richer spectrum is
available. However, for breathers in a solid, there is no reason to expect a homotopically
nontrivial coordinate space.

4.3. KAM tori, the EBK method and stroboscopic reduction

The confinement seen in figure 7 is a restriction of the system to a small portion of the
classical phase space. The restriction is even greater than is immediately evident: the orbit
occupies only a two-dimensional hypersurface, a 2-torus. Regular motion on a torus lives
on a hypersurface of up to half the dimension of the phase space [19]10. As a result,
functions of these variables and in particular the original canonical variables, are quasi-
periodic functions with angular frequencies given by ωk = ∂H/∂Jk , where the action-angle
variables are {(J1, θ1), (J2, θ2), . . . , (Jn, θn)}. For almost all parameter values in the studies
described below there was significant amplitude in only two frequencies, indicating a two-
dimensional torus and confirming the visual implications of figure 11.11 However, the toroidal
structure manifest in the projection onto the space {Q1, P1, q1, p1} hides a small sharing of
excitation by other degrees of freedom, Q2, etc. In particular, for 1% accuracy of the action
it is vital to include contributions of atoms 3, etc. Labeling the action-angle variables for
the torus (J1, J2), this implies that in principle these variables are functions of many of the
original atomic coordinates, not just the first two.

Semiclassical quantization of regular motion has been studied using variants of EBK
quantization [31–36, 38]. In our case, the absence of directly identifiable variables has

10 Motion on a two-dimensional torus, means that only two of the Js are nonzero.
11 Higher harmonics can also appear, due to nonlinearity, but in practice their amplitude is extremely low in our
system. The torus topology does not depend on the absence of such harmonics.
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Figure 18. Projection on the Q1–P1 plane of the stroboscopically viewed KAM torus. There are
236 points taken for 299 � t � 679 (in units of 1/ω0).

prevented us from carrying over techniques in the literature. Nevertheless, we expect the
semiclassical approximation to be effective: the frequencies of our breathers correspond to
excitation energies of about 10–15 meV. Estimates based on the Stokes shift and on the width
of the luminescence lines suggest that there is about 150 meV available to the breather, so that
aggregate quantum numbers of about 10 are anticipated.

4.4. Calculating the action using a stroboscopic

The semiclassical breather program is now clear: numerically find the classical energy as a
function of J. For each J an appropriate multiple of h̄, one has a quantum energy level. Since
the Js are unknown functions, one varies other parameters and evaluates the Js as a function
of those parameters, varying them until the Js take the right values. At that point, one has the
correct quantized energy levels (to O(h̄2)).

Finding the values of the Js for a given orbit requires evaluating
∑∮

p dq/2π along
curves that are topologically independent. This in turn requires a smooth curve of ps and
qs. Such curves are obtained by looking at the orbit with a stroboscope. The pulse times
for the strobe are found by Fourier transforming the orbit. Thus, if τ is a quasi-period of
the orbit, one redoes the calculation and finds the phase space point at times of the form
t = mτ , with m = 1, 2, . . . . (This is done for each quasi-period.) Recalling the action-angle
characterization of the torus, this sets one of the angle variables equal to a constant and lowers
the dimension of the torus by one. One thus obtains a loop for any phase space plane. For
ps and qs corresponding to large excitation the loop is smooth and circle-like, but for smaller
excitation can be quite rough. However, just because this is of lower excitation it does not
seriously affect numerical accuracy. See figure 18 for a typical projection of this set on the
Q1–P1 plane.
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Table 1. Quantized energies.

n1 ↓, n2 → 0 1 2 3

0 0.0269 0.0564 0.0864 0.1173
1 0.0522 0.0819 0.1121 0.1419
2 0.0772 0.1071 0.1370 0.1660
3 0.1028 0.1330 0.1629 0.1929
4 0.1278 0.1576 0.1880 0.2197
5 0.1531 0.1830 0.2135 0.2444
6 0.1786 0.2092 0.2392 0.2700
7 0.2043 0.2347 0.2651 0.2961
8 0.2296 0.2595 0.2903 0.3215
9 0.2550 0.2852 0.3173 0.3469

10 0.2800 0.3111 0.3414 0.3719
11 0.3069 0.3369 0.3679 0.3982
12 0.3315 0.3621 0.3928 0.4292
13 0.3572 0.3883 0.4252 0.4492

The EBK quantization condition, from equation (29), is jn�
= 1

2π

∑
k

∮
pk dqk =

h̄
(
n� + 1

2

)
, � = 1, . . . , N , with 2N the dimension of phase space. Parameter counting shows

that this condition selects more than just E: it completely determines the torus. This feature is
central to our calculational strategy and can also provide a semiclassical approximation for the
wave function. To find appropriate action values we studied a two-parameter family of initial
conditions for the classical mechanics. These were selected so that only the breather was
excited, which was accomplished as a corollary of confinement. (This ignores the zero-point
energy of the other modes.) Using search methods described in detail [23], this allowed the
quantization demand to be satisfied.

It is worth mentioning that our situation precludes use of the otherwise effective surface
of section (SOS) method, which is often applied for EBK quantization. In that method
things would be set up so ‘dq’ would be zero in the dimension orthogonal to that used in the
calculation, and one could evaluate a single

∮
p dq in the plane indicated. However, because

our torus extends into several dimensions, fixing a single coordinate to be constant does not
eliminate the need to evaluate other integrals. The full sum,

∑ ∮
p dq, is over a particular

phase space path and that path is picked in the plane of a well-formed oval, generally that of
the Q1–P1 plane. Note that nearby points on the oval come at very different times, but this is
irrelevant for the action calculation.

Figure 11 shows a projection onto the Q1–P1 plane of the points selected for the integration.
One circle is used for each action calculation; about 2000 additional points are included to
give perspective on the location of the rest of the torus.

4.5. Numerical results

Numerical values of energy versus action are given in table 1. A graph (as given in [23]) is
less informative since the image is very nearly a plane. The parameters used were taken as
approximations to those of KBr:Pb2+, but as indicated earlier, cannot be considered part of a
fundamental or ab initio theory. Parameters and units are given in the appendix.

A consistency check is available. The ωs are calculated from FFT, but by the principles
of mechanics should also be given by ∂H/∂j . We can evaluate the latter quantity using the
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Table 2. Frequencies from FFT (averaged over 0 � n1 � 13) and from the slope of energy versus
n1 for fixed n2 = 0, 1, 2, 3.

n2 = 0 n2 = 1 n2 = 2 n2 = 3

FFT 3.2184 3.2273 3.2359 3.2444
Slope of E/h̄ 3.2188 3.2297 3.2624 3.2593

Table 3. Frequencies from FFT (averaged over 0 � n2 � 3) and from the slope of energy versus
n2 for fixed n1 = 0, 1, . . . , 13.

n1 = 0 n1 = 1 n1 = 2 n1 = 3 n1 = 4 n1 = 5 n1 = 6
FFT 3.7977 3.8070 3.8159 3.8254 3.8345 3.8432 3.8520
Slope of E/h̄ 3.8111 3.7930 3.7528 3.8003 3.8748 3.8564 3.8527

n1 = 7 n1 = 8 n1 = 9 n1 = 10 n1 = 11 n1 = 12 n1 = 13
FFT 3.8606 3.8691 3.8774 3.8855 3.8938 3.9022 3.9105
Slope of E/h̄ 3.8722 3.8805 3.8979 3.8739 3.8617 4.0994 3.9604

independently calculated energies and action values. This therefore serves as a check on those
calculations. In table 2 we show the slopes of the energy (divided by h̄)12 as a function of n1

and compare these to the average ω2 values for the corresponding initial condition set. The
same is done for energy slopes for fixed n1 and 0 � n2 � 3. Although there are fewer points,
the consistency is good and the results presented in table 3. Other self-consistency checks can
be found in [23].

For all data presented above, the value of q0, the ‘push’ on the chain due to the JT distortion
of the Pb, was taken to be unity (1 Å). This was based on rough estimates of displacements,
but may be a bit high. When ω0 is derived from ωDebye (as described in the appendix), a value
of q0 that better matches the available energy is 0.75; however, in a run in which all atoms
begin at 0, this yields little excitation in the second breather mode, with less opportunity to
study that aspect of the problem. Moreover, if ω0 is instead derived from the bulk speed of
sound, one finds that q0 = 1 is the better choice. In any case, for our systematic study we
chose the latter value. In general though, as one moves toward better modeling of the actual
experiments, an improved potential should be sought, based on matching speed of sound, band
gaps [48] and other properties.

5. Stability of quantum breathers

The lifetime of the quantum breather against decay is an issue of experimental relevance. At
the classical level, both analytical and numerical experience support an infinite lifetime, at least
for the one-frequency breather [49]. In a diatomic lattice there are two breather frequencies
and, in principle, combinations of these modes can allow energy to leave via the phonons. In
our simulations, as shown in section 3.3, this does not take place in any perceptible way.

But classical stability does not guarantee its quantum counterpart. Quantum tunneling
bypasses classical constraints, and, for a translationally invariant system, insures that bound
states that are not of finite support become bands. Indeed such bands—as well as tunneling—
have been studied for breathers in a homogeneous lattice [50–52]. Other breather quantization
approaches have also been taken, including semiclassical, as described in section 4, and
field-theoretical [53]. In the semiclassical approach one studies the torus-confined classical

12 The calculation is entirely classical; the h̄ enters only because the action (j ) values we use are spaced by h̄.
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trajectory. This yields a stable state, since, just as for a 1D state hidden behind a barrier,
the classical trajectory does not sense the possibility of escape. Our expectation is that the
decay rate should be of the form exp(−[positive constant]/h̄), just as for one-dimensional
tunneling. This reflects the absence of a stationary point in the functional integration, and,
as in finite-dimensional asymptotics when a stationary point is absent and the endpoints of
integration are infinite, one can only get contributions that vanish faster than any power of the
asymptotic (going to zero) parameter.

The stability of quantum breathers has been controversial, with some authors [54] claiming
that breathers in alkali halides should have lifetimes on the order of 10 ns. (They also
appear to claim O(h̄2) decay, contradicting the semiclassical expectations mentioned above.)
Subsequent work [55] challenged this estimate and suggests stability in the limit of large
systems. Our calculations [56, 57], using two methods, confirm stability. For the purpose
of this ‘stability debate’ we only considered monatomic chains, since the claims of quantum
decay had been made for this (simpler) system.

The system is a ring of N + 1 unit-mass atoms with Hamiltonian

H =
N∑

k=0

{
1

2
p2

k +
1

2
ω2

s x
2
k +

1

2
ω2

0(xk − xk+1)
2 +

1

4
λx4

k

}
, x ∈ R. (31)

Periodicity is expressed through x0 ≡ xN+1 and mod-(N+1) addition for atom labels. This is
the nonlinearity studied in [50]. Another system, closer to our own models, is

H̃ =
N∑

k=0

{
1

2
p2

k +
1

2
ω2

s x
2
k +

1

2
ω2

0(xk − xk+1)
2 +

1

4
λ(xk − xk+1)

4

}
, (32)

also periodic. This system was studied in [57], but will not be discussed in this review, since
the results closely parallel those of equation (31).

We next make a significant calculational simplification, but one that does not affect the
in-principle issue of quantum stability, or at least insofar as that principle was called into
question by [54], since it is effectively the same approximation that is used there. Specifically,
we drop all nonlinearity except that affecting particle 0. This is based on the observation that
all atoms other than 0 (for the monatomic chain with the parameters we use) hardly move,
and in particular are well within the regime where nonlinear effects are negligible. With this
assumption the Hamiltonian corresponding to equation (31) is

H =
N∑

k=0

{
1

2
p2

k +
1

2
ω2

s x
2
k +

1

2
ω2

0(xk − xk+1)
2

}
+

1

4
λx4

0 . (33)

One can compare the classical orbits that result from the Hamiltonian of equation (32),
with full nonlinearity, and those resulting from equation (33). Plots of position and kinetic
energy are nearly indistinguishable. To see any difference one should look at the Fourier
transform of position, figure 19. For the fully nonlinear equations, there is excitation of higher
harmonics, but it is down in magnitude by several orders of magnitude from the principal
oscillation.

Remark. Note that this Hamiltonian automatically eliminates the issue of decay via bands,
which for our breather is irrelevant (our system is not translationally invariant) and in general
is small.

To deal with equation (33), we used two distinct approaches, having at their core
fundamentally different approximations. The first is numerical diagonalization, similar to
Wang et al [50], and in which we incorporated methods to reduce cutoff effects and to provide
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Figure 19. Fourier transform of the first atom; comparison of the full nonlinear model with the
only 0 nonlinear and linear mode approximations. The ‘one nonlinear’ plot is displaced downward
by 3 and the ‘local mode’ plot by 6. Dotted lines indicate the span of the phonon band.

direct evidence of localization. The second is a path integral calculation, treating the breather
fully quantum mechanically, similar to Feynman’s polaron [58]. The approximation for the
calculations in this case is semiclassical asymptotics.

For both these approaches, albeit for slightly different objectives, we find it useful to
introduce a local mode. That is, we consider the Hamiltonian

H0 =
N∑

k=0

{
1

2
p2

k +
1

2
ω2

s x
2
k +

1

2
ω2

0(�x)2
k

}
+

1

2
ω2

1x
2
0 (34)

which, with a good choice of ω1, will bear a strong, but not perfect resemblance to the breather.
This local mode is linear and thus has true, non-decaying, eigenstates localized at the site 0.

5.1. Numerical diagonalization

For numerical diagonalization the Hamiltonian (33) is made finite-dimensional by using a
phonon basis and imposing a cutoff on the level of phonon excitation. A low cutoff is needed
because of the proliferation of dimensions in the (implicit) tensor product of phonon operators.
The same problem was faced in [50].

We found that introducing a local mode and perturbing around that made for a significant
reduction in the number higher order phonons needed in the perturbation expansion. The
Hamiltonian is thus split in the following way:

H =
N∑

k=0

{
1

2
p2

k +
1

2
ω2

s x
2
k +

1

2
ω2

0(�x)2
k

}
+

1

4
λx4

0 = H0 + VI , (35)

with H0 given in equation (34) and

VI ≡ 1
4λx4

0 − 1
2ω2

1x
2
0 . (36)

In figure 20 we give a one-dimensional example exhibiting the benefits of this split.
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Figure 20. Advantage of using a local mode for perturbation theory. Let H0 = p2/2 + x2/2, V4 =
λx4/4, V2 = ω2

1x
2/2, V4 minus 2 = V4 − V2. For this graph we use λ = 8 and ω1 = 3. The

curve marked ‘straightforward, low cutoff’ results from perturbing H0 by V4, with operators in
the number representation cut off at 20. The curve marked ‘w.r.t. local...’ takes H0 + V2 as the
‘zero-order’ Hamiltonian and perturbs it by V4 minus 2 with the same cutoff, 20. This parallels our
method for the larger ring problem. Finally the curve marked ‘large cutoff’ results from perturbing
H0 by V4 but with a much larger cutoff (1 0 0), yielding results that are reliable (to the accuracy
of the graph) for levels 1 through 20. Note that the figure shows the logarithm of the energy
eigenvalues.

We will not go into the details of the calculation, as it consisted of fairly standard
expansions about our favorable basis states. Beyond the local mode simplification we also
noted a reflection symmetry about atom 0, which allowed a nearly factor 2 reduction in the
dimension. The parameters we used were λ = 8, ω0 = 1 and ωs = 1 (used in [50]), and for
ω1 = 2.5 the true eigenfunction having greatest overlap with the first excited state of the local
mode is shown in table 4. Clearly the local mode dominates. The next largest component is
the thrice excited local mode, which is merely a shape adjustment. Other modes barely make
the 10−3 level. Note that the highest excitation level for other phonons is 3, indicating that a
cutoff of 6 is safe. In fact, even to probability 10−8 there is no excitation higher than 3 except
for the local mode.

Remark. For nearest-neighbor nonlinearity the story is the same. A systematic study of a
size-8 ring with cutoffs of 6, 8 and 12, showed that the local mode dominated the Hamiltonian’s
ground state.

Remark. In [57] details of this calculation are given. Many more states are exhibited and a
comprehensive study of cutoff dependence provided.

Our conclusion is that the breather is almost entirely dominated by the local mode, and like
it, stable. In [57] we also looked explicitly at time dependence. The most serious limitation
in our demonstration is the size of the system. Although we have not diagonalized our system
for rings of 14 spins, it is nevertheless possible to calculate the principal matrix element that
expresses the nonlinearity. The initial state of interest is that having a single excitation of
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Table 4. Principal components of the breather state. The first four columns refer to the four
symmetric phonons in a 6-atom ring. Row 1: frequencies (local mode is highest). Subsequent
rows: number-operator values. Fifth column: norm squared of the mode (log10 in parentheses).
Cutoffs: local mode 13, others 6. For this state first-order perturbation theory is good to 0.3%.
The last column reports the same calculation with cutoff 8.

0.749 0.987 1.19 2.04 Prob. (6) Prob. (8)

0 0 0 1 0.9947 0.9952
0 0 0 3 3.315 (−3) 3.321 (−3)
0 1 0 0 1.122 (−3) 0.848 (−3)
0 0 1 0 5.748 (−4) 4.345 (−4)
1 0 0 0 1.545 (−4) 1.167 (−4)
0 1 0 2 1.004 (−4) 0.754 (−4)
1 0 0 2 2.866 (−5) 2.152 (−5)
0 0 1 2 2.303 (−5) 1.728 (−5)
0 0 0 5 3.670 (−6) 3.627 (−6)

the local mode: |local〉 ≡ |0, 0, 0, . . . , 1〉 where the ‘1’ refers to the eigenvalue of the local
mode number operator and the zeros to other phonon levels. This state couples to those in the
continuum via the matrix element

g(n1, n2, . . .) ≡ 〈local|x4
0 |n1, n2, . . .〉. (37)

In figure 21 is a logarithmic plot of g as a function of energy. The pattern seen in this figure
is that for a ring of 14 oscillators. It is the same as one sees for 4, 6, 8 or any number that
we have been able to study. As such the substantial overlap of the true eigenstate—induced
by the nonlinear λ—with the local mode—induced by ω1—should continue as system size
grows, since it is these matrix elements that determine the overlap.

5.2. Path integral approach

Our use of the path integral in this problem exploits an application of that technique that goes
back to Feynman’s treatment of the polaron [58, 59], one of the early triumphs of functional
integration. It is based on one of the most useful features of the path integral: the propagator for
a quadratic degree of freedom coupled linearly to something else can be evaluated explicitly,
leaving only a self-coupling of that other degree of freedom. The penalty is the nonlocality
in time of the self coupling, the reward the reduction of the problem to a single degree of
freedom.

As for the numerical integration approach (section 5.1), it will prove useful to introduce a
(quadratic) local mode. In this case its function will be used as a benchmark for localization.
We know that with a local mode the reduced dynamical system (reduced à la Feynman, as
just discussed) has a localized ground state; we will find the same to be true for the nonlinear
system.

5.3. Setting up the path integral

The Lagrangian associated with the Hamiltonian (33) is

L = 1

2

N+1∑
n=1

ẋ2
n − 1

2
ω2

0

N+1∑
n=1

(xn − xn+1)
2 − 1

2
ω2

s

N+1∑
n=1

x2
n − λ

4
x4

0 + μx0(xm + xN+1−m). (38)
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Figure 21. Base-10 logarithm of |〈0, 0, . . . , 0, 1|x4
0 |n1, n2, . . .〉| for a ring of 14 oscillators. States,

|n1, n2, . . .〉, are ordered by increasing energy.

q

x1xN

xN+1-m xm

Figure 22. Selected atoms on the ring. For convenience the notation q is used for x0.

We have introduced an additional term, μx0(xm + xN+1−m), which allow us to study
correlations. The derivative (at μ = 0) of the (appropriate form of the) propagator provides
a 0-m-correlation. We will take particle m to be distant from 0, typically about 1/3 of the
way around the ring. The use of a pair (m and (N + 1 − m)) maintains mirror symmetry with
respect to particle 0. We will also distinguish between the ring, all N + 1 atoms, and the chain,
atoms 1 through N (see figure 22).
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The Lagrangian L can be written in the form L = L0 +LC +LI . Here L0 is the Lagrangian
of particle 0

L0 = 1

2
q̇2 −

(
ω2

0 +
1

2
ω2

s

)
q2 − λ

4
q4, (39)

where we have adopted the notation q for x0. LC is the Lagrangian of the chain

LC = 1

2

N∑
n=1

ẋ2
n − 1

2
ω2

0

N∑
m,n=1

Jmnxmxn − 1

2
ω2

s

N∑
n=1

x2
n, (40)

with Jmn = 2δmn − δm+1,n − δm,n+1 (m, n = 1 . . . N), the Jacobi matrix. The last term LI is
the interaction between particle 0 and the others

LI = ω2
0q (x1 + xN) + μq(xm + xN+1−m). (41)

We perform the path integral for the chain and arrive at an effective action and path
integral for q alone [45, 58, 60, 61]. The result of these standard calculations is

G(qf , T ; qi, 0) =
∫

Dqe
i
h̄
(S0+Seff), (42)

where the action S0 arises from the original L sans chain terms, specifically

S0 =
∫

dt

{
1

2
q̇2 −

(
ω2

0 +
1

2
ω2

s

)
q2 − λ

4
q4

}
. (43)

The effective action, Seff , is the result of the integration just described over chain degrees of
freedom. It is given by

Seff =
∫ T

0

∫ T

0
dt ds K(|t − s|)q(t)q(s), (44)

with

K(u) =
N∑

n=1,3,...

τ 2
n

cos �n

(
T
2 − u

)
�n sin

(
�nT

2

) , (45)

and

τn ≡
√

2

N + 1

(
ω2

0 sin
πn

N + 1
+ μ sin

πnm

N + 1

)
. (46)

We shall study the (matrix element of the) propagator in the stationary phase approximation;
that is, we focus on the action (including Seff) along the extremal ‘classical paths’.

Let us return for a moment to the formulation in terms of all degrees of freedom in
order to appreciate what information is contained in G. The spectral expansion of the full
propagator—a function of all variables—is

G(x ′′
0 , x ′′

1 , . . . , t; x ′
0, x

′
1, . . .) =

∑
α

�α(x ′′
0 , x ′′

1 , . . .) exp(−iEαt)�∗
α(x ′

0, x
′
1, . . .), (47)

where α is an eigenstate label. This implies that the subsequent operations in deriving
equation (43) lead to

G(q ′′, t; q ′, 0) = exp
(

+i
∑

�nt/2
) ∑

α

φα(q ′′) exp(−iEαt)φ∗
α(q ′), (48)

where

φα(q) ≡
∫

�0(x1, . . .)
∗�α(q, x1, . . .) dx1 . . . , (49)

33



J. Phys. A: Math. Theor. 43 (2010) 183001 Topical Review

−20 −15 −10 −5 0 5 10 15 20 25
10

−15

10
−10

10
−5

10
0

Atom number

lo
g

1
0
(|

u
0
|)

Figure 23. The classical local modes are u�(n), with � the mode label and n the atom. Shown in
the figure is the base-10 logarithm of the absolute value of mode 0, the local mode. Parameters are
ω1 = 2 and ω0 = 1 (cf equation (34)). Clearly there is an exponential dropoff of excitation for the
atoms.

and �0 is the ground state of the chain. Note that Eα in equation (48) is the total energy of the
ring, while EC ≡ ∑

�n/2 is the total ground state energy of the chain. Going to imaginary
time, t = −iT equation (48) becomes

G̃(q ′′, T ; q ′, 0) =
∑

α

φα(q ′′) exp[−(Eα − EC)T ]φα(q ′)∗. (50)

Our use of equation (50) will be to study eigenstates. Although the Hamiltonian obviously
has eigenstates, we do not know whether they resemble breathers, that is to say, whether there
is localization. Our goal then is to show that for some true eigenstates the amplitude is
concentrated near particle 0.

To see how to do this, we will consider first a local mode, a quantum state that we
know to be localized. Thus we will repeat the path integral calculation for the Hamiltonian
equation (35), and in equation (38) will replace the 4th power by a quadratic. Specifically, the
classical mode function has a sharp spatial dropoff and the quantum state represents atomic
oscillations with that pattern. For reference we show the classical local mode for ω1 = 2
and ω0 = 1 in figure 23 (a solution of equation (34)). (The value of ωs does not affect the
function.)

Our goal then is to ascertain properties of φα and Eα from the semiclassical approximation
to G. However, for both the linear and nonlinear cases, implementing the semiclassical
approximation presents technical challenges, which we now discuss.

5.4. Methodology

The first observation to be made is that the development from equation (38) to equation (50)
goes through in exactly the same manner, with the same K, etc, for the quadratic local mode as
for the nonlinear excitation, with the sole exception of the final form of S0, which, for the local
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mode case, has a term ω2
1q

2/2 instead of λq4/4. Going over to imaginary time, our problem
revolves about the following quantities:

Stotal =
∫ T

0
dt

{
1

2
q̇2 +

1

2

(
ω2

s + 2ω2
0

)
q2 + U(q)

}
−

∫ T

0

∫ T

0
dt ds K̃(|t − s|)q(t)q(s), (51)

where U(q) = ω2
1q

2/2 for the local mode problem. The same form holds for the nonlinear
problem as well, but with U(q) = λq4/4. Stotal is the total classical action, and in the path
integral appears as exp(−Stotal) (note the minus sign, a result of the t → −it transformation).
The self-interaction kernel becomes

K̃(u) =
N∑

n=1,3,...

τ 2
n

cosh �n

(
T
2 − u

)
�n sinh

(
�nT

2

) , (52)

with the same τn as in equation (46). The classical equation of motion follows from the usual
variational methods and is

q̈ − (
ω2

s + 2ω2
0

)
q − ∂U

∂q
+ 2

∫ T

0
K̃(|t − s|)q(s) = 0. (53)

For the semiclassical approximation one must solve equation (53). We used different methods
for the linear and nonlinear cases, and discuss them separately.

5.4.1. Linear, non-local in time propagators. For U(q) = ω2
1q

2/2, equation (53) can be
discretized, say with tk = kε, k = 0, 1, . . . ,M + 1, ε = T/M . q becomes a vector, qk = q(tk)

(k = 1, . . . ,M) and the entire equation has the form Bq = q0,13 with B a matrix consisting
of three parts: the second derivative operator, 2/ε2 on the diagonal, −1/ε2 above and below;
a diagonal matrix proportional to

(
ω2

s + 2ω2
0

)
and a matrix (which by a slight abuse of notation

we call) K whose substantial non-diagonal components reflect the nonlocality in time. From
equation (53) it may not be evident how a nonzero right-hand side (q0) comes into the picture.
It arises from the boundary conditions. When discretizing, the first and last rows of the second
derivative operator call on q-components outside the range 1, . . . ,M . These other components
are the boundary values (call them a = qinitial and b = qfinal), so that q0(1) = −a/ε2 and
q0(M) = −b/ε2 (other components of q0 are zero). This method of dealing with the two-time
boundary value problem is a simpler version of what is done in [62]. It follows that the solution
of the nonlocal-in-time equations of motion is q = B−1q0. It is also immediate that for this
linear equation the action along this ‘classical path’ is given by S = [q(t)q̇(t)/2]|T0 , although
one can also evaluate S by explicit integration.

The nonlocality in time means that the matrix K is not sparse, putting a limit on the
smallness of ε, hence on the accuracy of the action. This was overcome by extrapolating in
ε. Call S(ε) the action that results from the discretization and matrix inversion with a given ε.
Expand in ε: S(ε) = S(0) + εS ′(0) + ε2S ′′(0)/2 + · · ·. By evaluating S(ε) for several values
of ε one can then extrapolate to zero. We typically used three values.

As described in detail in [57], the accuracy of this method was tested against known
analytic results both for the harmonic oscillator and in the asymptotics of φ0(q) (as defined in
equation (49)). Excellent agreement was found.

5.4.2. Nonlinear, non-local in time propagators. With a nonlinear term in the action, the
classical nonlocal two-time boundary value problem cannot be solved by matrix inversion.

13 This q0 is not the same as that used in our dynamical simulations.
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The equation to be solved is

q̈ − (
ω2

s + 2ω2
0

)
q − λq3 + 2

∫ T

0
K̃(|t − s|)q(s) = 0. (54)

Our method is an extension of Feynman’s approach [58] in which the introduction of an
auxiliary variable eliminates the nonlocality. Then one can use standard numerical methods
for solving the two-time (even-if-nonlinear) boundary value problem. Recalling the definition
of K̃ , equation (52), one can define auxiliary variables zn by

zn(t) ≡
∫ T

0
ds

cosh �n

(
T
2 − |t − s|)

�n sinh
(

�nT

2

) q(s). (55)

equation (54) becomes

q̈ − (
ω2

s + 2ω2
0

)
q − λq3 + 2

∑
n

τ 2
n zn = 0. (56)

Taking two derivatives of zn leads to

d2zn

dt2
= �2

nzn − 2q(t), n = 1, 3, . . . , 2

[
N − 1

2

]
+ 1. (57)

One non-local equation has been replaced by a larger number of local ones. There is but a
single pair of boundary conditions: q(0) = a, q(T ) = b. The conditions on z are forced
by self-consistency arising from equation (55), which incidentally also imply zn(0) = zn(T ),
for all n. It is amusing that with the quartic interaction replaced by a quadratic one, this
linear system is equivalent to the set of classical linear equations that apply to the ring, with
the boundary conditions inherited from the ground state averaging (which is of course where
equation (54) (made linear) comes from in the first place).

For numerical solution of equation (54), we noted that for large N and T, one could
get 10−4 accuracy with the approximation K̃1(u) ≡ K̃(0) cosh(ωeffu), for a judicious choice
of ωeff .

With this approximation for K̃1, only a single z need be defined, so that our nonlocal
equation becomes a pair of second-order ODE’s, with boundary values for one of them and a
self-consistency condition for the boundaries of the other. Using the optimal ωeff , the equations
are

q̈ = (
ω2

s + 2ω2
0

)
q + λq3 − 2z, (58)

z̈ = ω2
effz − 2q(t), with z(t) ≡

∫ T

0
ds

cosh ωeff
(

T
2 − |t − s|)

ωeff sinh
(

ωeffT

2

) q(s). (59)

The boundary values of q(t) are given. For z one proceeds iteratively. For given z(0) (=z(T ),
by definition), the boundary value problem can be solved by standard methods. Using that
solution, q(t), one recomputes z(0). In effect one has a function mapping z(0) into a new
value, and a fixed point of the map can be found numerically. That fixed point solves the
original boundary value problem for q.

To improve on this solution, we noted that the true solution of the classical nonlinear,
nonlocal problem minimizes the action, S. This suggesting modifying the q(t) derived above
so as to further reduce S. The class of perturbations for this purpose can be narrowed by
the following consideration. The potential that we study is an inverted oscillator, linear or
nonlinear. Therefore, if the time interval for going between two not-too-small boundary
values is large, for most of that time interval the particle will be near zero, with zero velocity:
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the path is thus an instanton and, except near the endpoints, will be exponentially small (in
T). S-reducing variations of q will thus have the same shape. Our basic variation consists
of adding and subtracting hyperbolic cosine functions with varying amplitudes and angular
frequencies.

When this procedure was implemented, the resulting changes in S were extremely small.
The first correction was on the order of 10−5 of the action, and subsequent reductions were
of order 10−15. No other functional forms (e.g. multiplying instanton-shaped curves by
oscillatory functions) gave any improvement at all. The results presented below use this
method of optimizing S.

It is also possible to perform some of the checks made on the linear problem. In
particular the asymptotic form of the wave function for a quartic anharmonic oscillator is
ψ ∼ exp(−[positive const · q3]). With various λ we found the action for large boundary
values of q; there was a very good fit to the cubic.

5.5. Localization

The local mode represents a localized excitation. Figure 23 shows the classical mode
oscillation amplitude, hence the shape of the phonon; in particular it indicates an exponential
dropoff with distance from the center of the mode. We will use our path integral formalism
to show how it too reflects the localization of the ‘local mode’. Then we will use the same
technique to establish the localization of the nonlinear breather wave function.

The key is the coupling, μx0(xm + xN+1−m), inserted in the Lagrangian of equation (38).
Site m is taken far from site 0, where the large oscillations of the breather are taking place. A
derivative with respect to μ at μ = 0 provides the correlations we seek in the following way.
The imaginary-time version of equation (42) is

G(qf , T ; qi, 0) =
∫

Dq e−Stotal/h̄, (60)

where Stotal is given by equation (51), and K̃ by equation (52) (equation (51) is valid for both
quadratic and quartic potentials). Note that the μ-coupling appears in the definition of τn

(equation (46)), and only there.
Thinking back to the propagator before the integration over chain mode ground states, we

consider the derivative ∂G(a,−iT ; a)/∂μ|μ=0. The importance of this derivative arises from
the relation

〈A〉 = ∂

∂μ

[∫
exp(−S + μA) dx

] ∣∣∣∣
μ=0

/∫
exp(−S) dx, (61)

where exp(−S) is a weight for averaging. Since we are taking ∂/∂μ after integrating, we are
getting an average of the 〈qxm〉-correlation in the chain mode ground state14.

In the semiclassical approximation (which is exact in the linear case), the study of
∂G(a,−iT ; a)/∂μ|μ=0 is essentially the same as the study of σ(a, T , g) ≡ ∂S(a, T )/∂μ|μ=0,
where ‘S’ is the imaginary time action, a is the common initial and final endpoint, and T the
imaginary time. The quantity g, implicit in S(a, T), parameterizes the relevant particle 0
enhancement; for the linear local mode it is ω1 and for the quartic case it is λ.

Consider first σ(a, T , ω1) ≡ ∂S(a, T )/∂μ|μ=0 for moderate T (such that states other than
the ground state survive in the spectral sum for G), for small ω1 and for large a. Because a is
large, the important terms in the spectral sum will not be those of lowest energy, but those that

14 Of course what we call the 〈qxm〉-correlation is really the 〈q(xm + xN+1−m)〉-correlation (or 〈q(xm + x−m)〉). Note
too that there is no mathematical problem in exchanging the order of operations in equation (61).
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Figure 24. dS/dμ (essentially a correlation function) has markedly different behavior for large
and small endpoint values (a or a in the figure) for q. Shown on the left, figure 24(a), is the effect of
varying a and ω1 for the linear local mode, while on the right, figure 24(b), are the corresponding
graphs for variation of a and λ in the nonlinear mode. Both for a linear local mode (as a function
of ω1) and for the breather (function of λ), a large value of a demands relatively large correlations
when neither a local mode nor a breather is present (ω1 ∼ λ ∼ 0), but that correlation is wiped out
for large parameter (λ or ω1), for which the breather or local mode is effectively decoupled from
the rest of the ring.

permit large excursions of q (cf equations (48) and (49)). However, since ω1 is assumed small,
there will be no local mode. So pulling q far from its equilibrium position, pulls all atoms
far from their positions, and the correlation of atom 0 (q) and atom m (xm) should be large.
On the other hand, suppose ω1 to be large (with a still large and T moderate). In that case
there is a pronounced local mode and pulling q away from equilibrium has little impact on xm.
For the local mode, q can have large excursions while other atoms hardly move. Therefore,
one expects σ to be small. In figure 24(a), the lowest curve shows just this behavior. The
boundary value of q, a, is 4 and for small ω1 (no local mode) there is a large correlation
with the motion of atom-m (0 is at the top of the figure). As ω1 increases, this correlation
shrinks.

By contrast, if a is small, the variation of ω1 has little effect. This can be understood as
follows. The requirement on the endpoints of q imposes little demand on any other coordinates
whether or not there is a local mode.

We next turn to the nonlinear case. Here we do not have a priori knowledge of the wave
function but can use the correlation function as a test of localization. The behavior of the
correlation function, as a function of a and λ exactly parallels that of the linear local mode.
This is shown in figure 24(b). For small λ and large a there is no breather and, as for the small
ω1 case, the demand for a large excursion of q forces a large excursion of xm. And now the
central observation: for large λ, forcing q to be large has almost no impact on xm, exactly as
for the quadratic local mode, from which we deduce the localization of the breather excitation.
We remark that corresponding values of ω1 and λ are related by λ ∼ ω2

1.
We mention that one can make similar deductions about correlations from the T-

dependence of dS/dμ. For details, see [57].
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Figure 25. Kinetic energy of the system interacting with a transverse phonon as a function of time
and atom number.

This establishes that the true eigenfunctions for which q has large displacements are
localized (when the coupling is strong). Since these are the true eigenfunctions, the quantum
breather is stable.

6. Breathers and noise/temperature

6.1. Temperature dependence of the decay anomaly

Experimentally [15], the decay anomaly is most pronounced at low temperature. With
increasing temperature it weakens and is extinguished around 100–150 K, depending on
the crystal. As shown in section 2.1.2, here too the slow relaxation assumption explains the
anomaly. In view of the breather-induced inhibition of relaxation at low temperature, it is
natural to expect that the temperature dependence of the anomaly should be a consequence
of thermal effects on the breather. This motivates the study of the effect of temperature on
breathers.

6.2. Models of noise

We have taken several approaches to treating noise. There is a surprising degree of subtlety
here (noted by other researchers as well [63–66]). It turns out that simply adding Gaussian
white noise to the initial coordinates of the atoms is unsatisfactory: either nothing happens
(low noise) or the breather could increase its amplitude and other breathers could form
spontaneously (high noise).

Better results are obtained by extending the model. In [24, 67] dissipative effects on
the breather due to transverse waves, i.e. phonons representing the motion of off-chain ions,
which drain the breather energy, have been explored. Generally, this involves the introduction
of additional degrees of freedom. Figure 25 demonstrates how, induced by a phonon kick
[24], energy radiates away. At low temperatures there are few transverse phonons that could
cause the effect, but their number rises with increasing temperature. This corresponds to a
weakening of the breather directly parallel to the observed temperature evolution of the decay
anomaly.
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Figure 26. Time dependence of averaged minima (dots) of the oscillatory motion of the first atom
of the chain. The oscillations are fit by an exponential function of the form (up to constants)
1 − exp(−γlowt); γlow = 7.76 × 10−4, the level of noise is 0.35.

In [67] the finite temperature effect is simulated by modeling the transverse effects in
greater dynamical detail. As before, we represent increasing temperature by increasing the
Gaussian white noise added to the initial coordinates of the members of a linear chain. But
although we continue to work with the one-dimensional chain, each member of the chain is
given an additional degree of freedom associated with motion along a direction transverse to
the chain. The idea is that in general the discrete breather phenomenon is most strongly elicited
in one dimension, and that at low temperature, due to the Jahn–Teller symmetry breaking, the
principal dynamical activity takes place in a single dimension. However, as temperature rises,
additional degrees of freedom, and in particular transverse modes of the atoms of our chain,
may have thermal excitations that allow energy to be shunted away from the pure breather
modes. A higher effective dimension also affects the breather through the appearance of
thresholds. In a dimension greater than 1, localization may not occur despite nonlinearity—if
the nonlinearity is too weak.

To quantify the breather decay we define a parameter γlow associated with the rate of
lattice relaxation (breather dissipation). This parameter is calculated from the fit of the
lower envelope of the oscillatory motion of the first atom of the chain relaxing into its new
equilibrium position. The lower envelope refers to the sequence of averaged extrema of the
oscillatory motion that are close to the impurity. This measure of lattice position reflects the
expectation that the transitions induced by the non-relaxed lattice (cf [2, 17]) are most likely
to occur at the times of extreme force on the quasi-molecule electronic wave function. An
example of the lower envelope fit providing the parameter γlow is in figure 26. We study the
temperature (noise) evolution of γlow to get a picture of the speed of breather decay. The wide
variation in response to noise requires a study of the statistics of γlow as a function of noise (the
experimental data are effectively an average over such statistics). The dependence of γ A

low on
the noise (temperature) is displayed in figure 27. The graph shows monotonic increase of the
breather relaxation speed with temperature which consistently reflects the experimental
observation where the decay anomaly weakens with increasing temperature and gradually
fades.

6.3. Non-dissipative incoherent reflection

Reference [68] returns to simpler models. The reason is that it uses more satisfactory ways to
deal with problems that arose in the pure one-dimensional model. The principal innovation is
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Figure 27. Noise (temperature) dependence of the γ A
low parameter.

the introduction of non-dissipative incoherent reflection. Its virtue is improved modeling of
the contact with the heat bath. This gives reasonable results when compared to experiment.

To create breathers at zero temperature, one generally begins with all atoms at rest and
applies an intense push on the first atom, simulating the force of the distorted impurity center.
This leads to reflections off the far end of the chain. Such reflections are unphysical and lead
to artificial focusing, which in turn can lead to breather enhancement rather than dissipation.
At zero-temperature this is not a problem, since one can put damping on the far end of the
chain. However, at higher temperatures that strategy will artificially cool the system.

We have therefore developed an alternative scheme for breaking up the radiated shock
wave; it is related to Anderson localization [69]. A one-dimensional system with randomness
can only support localized excitations. We take advantage of this by slightly randomizing
the masses at the far end of the chain. A wave impinging on them will be reflected to some
extent, but in a sufficiently chaotic manner that the collective effects of the reflected wave are
ameliorated.

Our procedure was to randomize the masses of about 40% of the atoms on the far end of
the chain, allowing them to depart by at most 25% from the values they would otherwise have
had. This maintains energy conservation, hence temperature constancy, while dissipating the
shockwave (in the sense of coherence, not energy loss). A portion of the breather formation
energy is added to that introduced by temperature, but this only renormalizes noise values.

The method of incoherent reflection in fact may prove useful in a variety of modeling
situations where one necessarily has a finite model but nevertheless wants to simulate an
infinite system. It is a way to suppress reflections off the boundary without loss of energy.
In figure 28 we present a comparison of kinetic energy with and without randomization of
masses.

Noise is introduced in two ways. Method 1 uses randomly distributed initial velocities
for all atoms, with temperature related to noise level. Method 2 excites each mode of the
system in such a way that the energy per mode follows the Boltzmann distribution for a given
temperature.

As in [67], we characterize breather decay by a parameter γlow associated with the speed
of lattice relaxation (breather dissipation). We again studied the statistics of γlow as a function
of temperature/noise (the experimental data are also such an average). The higher γlow, the
faster the breather decay. Figure 29 displays γ A

low as a function of temperature (or noise).
Because of the limitations of the model we do not expect quantitative precision, but take the
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Figure 28. Kinetic energy with and without randomization of masses. Time runs horizontally.
Atom number is the vertical axis, with atom 1 at the top of the figure. Where the graph is marked,
the kinetic energy exceeds about 10−3 for that atom at that time. In the first figure one can see a
periodic pattern due to the initial shock wave going out from the breather area (at the top), bouncing
off the end of the chain (bottom of the figure) and continuing to echo back and forth. In the second
figure masses are randomized near the end of the chain and traveling waves are not supported in
this area. The reflection is less coherent and the residual energy (what is not part of the idealized
breather) sloshes around in a way that reduces systematic effects. As indicated in the text, it was
important to have a way to break up the shock waves while nevertheless conserving energy.
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Figure 29. Temperature dependence of the average value of γlow using both noise models. Noise
model 1 is based on randomly distributed initial velocities. Calculated data are fit by an exponential,
5.773 × 10−7 × exp(0.028 × T ). Noise model 2 is based on randomly distributed initial position
and velocities. Calculated data are fit by an exponential, 1.259 × 10−7 × exp(0.022 × T ).

overall monotonic increase of the breather relaxation speed with temperature as an indication
thermal breather behavior is well-handled by our techniques. The increase, moreover, reflects
the experimental observation that the decay anomaly weakens (and ultimately disappears) with
increasing temperature.

7. Conclusions and remaining issues

The unexpected is often educational. Some anomalies in the history of physics have been of
great import, for example, that occurring in the perihelion shift of mercury [70]. Others have
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the potential to be. The ‘Pioneer anomaly’ comes to mind [71]. But the latter could turn out
to be some minor forgotten and forgettable effect. Between these extremes there is room for
small advances.

The work reviewed in the present article arose from an anomaly in the decay of
luminescence in what should have been a well-understood system, a color center embedded
in a rocksalt lattice, and which undergoes a Jahn–Teller distortion when excited. The first
explanations of this anomaly posited a factor of a one billion (109) slowdown in crystal
relaxation, which was more than some people were willing to believe. However, that slowdown
can be explained once nonlinear effects in the lattice are taken into account. What happens
is that a breather is formed, a localized oscillation, something that stays near the color center
because its frequencies are outside the phonon bands—a consequence of nonlinearity.

In this article we have described our putting together the pieces of this explanation, at
both the classical and the quantum levels. Although the ‘educational’ message is not in the
league of those in our opening paragraph, nevertheless we did find ourselves bringing new
ideas to the well studied Jahn–Teller effect as well as providing an experimental example of a
quantum breather.

We close with a discussion of what we see as our biggest remaining challenge. Although
the introduction of noise does account for the measured temperature effects in a qualitative
way, one still does not have a full quantitative description. Our suspicion at this point is that
there is a temperature-induced change in the matrix elements that allows the decay of the
long-lived metastable level. To some extent, this is already known to exist [4], but stronger
effects may be present.
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Appendix. Simulation parameters and physical constants

The units used in our simulations are as follows:

• Angstroms for distance.
• The mass of Br is unity and the ratio ‘r’ is usually taken to be 2, which is the approximate

Br to K mass ratio. The factor ‘M’ in V (u) (see its definition, following equation (15)) is
thus unity.

• The Debye temperature of KBr is taken to be 173 K, leading to ωDebye ∼ 2.3 × 1013 s−1

and 2π/ωDebye ∼ 0.3 ps.
• The time unit is 1/ω0, with ω0 the frequency in V (u). Thus, ω0 also becomes unity. The

relation between ω0 and ωDebye was discussed in [23] and in the present notation is given
by ω0 = ωDebye

√
2(1 + 1/r)/((6π2)1/3).
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In these units h̄ is approximately 0.007 897, one unit of energy is about 0.839 eV and the
time unit close to 0.1 ps. Note that these values are sensitive to the way in which ω0 was
fixed. If one instead sets its value by matching the bulk speed of sound in KBr, the time unit
increases by a factor 1.7, with a corresponding significant decrease in the energy scale.

For the nonlinearity parameter, λ (of V (u)), we took the value 1. Allowing for differences
in units this is in the same range that other authors have used [72]. The push from the expanded
quasimolecule is expressed through the non-dynamic q0 which was taken to be 1. With this
value the equilibrium value of the Br is displaced by about 8% of the ion separation distance
(which is about 3.3 Å) and the instantaneous push somewhat more.

The ‘holding’ parameter, ν, was often taken to be 4, reflecting the number of off-chain
nearest neighbors each ion has.

For most simulations we used 30 ions, although occasionally more (and more rarely,
fewer) were used. In any case, there was little change unless there were fewer than 10. Similar
remarks apply to most of the other parameters above. Setting r = 1 yields a qualitative
change, since there is no longer a gap between acoustic and optical phonons. Nevertheless,
with sufficient nonlinearity there were breathers.
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[5] Hlinka J, Mihóková E, Nikl M, Polák K and Rosa J 1993 Energy transfer between AT and AX minima in KBr:Tl

Phys. Status Solidi b 175 523
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[57] Schulman L S, Tolkunov D and Mihóková E 2006b Structure and time-dependence of quantum breathers

J. Chem. Phys. 322 55–74
[58] Feynman R P and Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York: McGraw-Hill)
[59] Feynman R P 1955 Slow electrons in a polar crystal Phys. Rev. 97 660
[60] Feynman R P 1972 Statistical Mechanics: A Set of Lectures (Reading, MA: Benjamin)
[61] Weiss U 1999 Quantum Dissipative Systems 2nd edn (Singapore: World Scientific)
[62] Schulman L S 1974 Some differential-difference equations containing both advance and retardation J. Math.

Phys. 15 295–8
[63] Reigada R, Sarmiento A and Lindenberg K 2001 Energy relaxation in nonlinear one-dimensional lattices Phys.

Rev. E 64 066608
[64] Reigada R, Sarmiento A and Lindenberg K 2002a Energy relaxation in Fermi–Pasta–Ulam arrays Physica

A 305 467–85
[65] Reigada R, Sarmiento A and Lindenberg K 2002b Asymptotic dynamics of breathers in Fermi–Pasta–Ulam

chains Phys. Rev. E 66 046607
[66] Reigada R, Sarmiento A and Lindenberg K 2003 Breathers and thermal relaxation in Fermi–Pasta–Ulam arrays

Chaos 13 646–56
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